
Plamen Koev RESEARCH PLANS

Introduction

For the immediate future my plan is to develop
New algorithms for computational multivariate statistical analysis,

as described in section 1.
I also plan on continuing work on
• Stable O(n2) algorithm for the nonsymmetric tridiagonal eigenvalue problem;
• Accurate computations with totally nonnegative (TN) matrices;
• Research in matrix theory related to oscillating systems of vectors;
• Continuing collaborations on practical applications,

as described in section 2.

1. New algorithms for computational multivariate statistical analysis

The main goal of this project is to devise stable and efficient algorithms for computing the
density, distribution, and quantile functions of select eigenvalues (and functions thereof) of the
classical random matrix ensembles—Wishart, Jacobi, and Laguerre.

These functions are a fundamental tool in many multivariate statistical methods, such as hy-
pothesis testing, principal component analysis, canonical correlation analysis, multivariate analysis
of variance, etc. [38]. This type of analysis is an integral part of many practical applications where
multiple signal sources/receivers are present and thus random covariance matrices naturally occur.
Applications include telecommunications and wireless networks [6, 16, 18, 27, 36, 37, 39, 40, 48],
image and signal processing [47], military applications (automatic target recognition and classifi-
cation) [7, 23, 34], etc.1

Many explicit formulas for the distributions of the eigenvalues of the classical random matrix
ensembles have been known for over 40 years (section 1.2). Unfortunately, most of these formulas
are in terms of the hypergeometric function of a matrix argument—an extremely slowly converging
series of Jack functions.

The hypergeometric function of a matrix argument has been incredibly difficult to compute even
in the simplest cases (matrix argument of size 3 or 4); the development of efficient algorithms for
its computation has been identified as a central open research problem in a large number of recent
publications, e.g., [6, §5A and §5B], [7, §IV], [16, §III], [18, Appendix I], [23], [34, §III.B], [36, §I],
[37, §III], [39, §III], [40, §III], [47, §II.C], [48, §5.2].

In our 2005 paper [33] Edelman and I developed the first practical algorithm for computing the
hypergeometric function of a matrix argument (section 1.3.1). This new algorithm is very efficient
for matrix arguments of size up to 10 (takes at most a few seconds time) and is exponentially faster
than the previous best algorithm [21]: on the same 5× 5 example our algorithm takes less than 1

100
of a second as opposed to 8 days for the algorithm of [21].

The plan now is to develop new, faster algorithms for the computation of the hypergeometric
function of a matrix argument, prove new theoretical results in random matrix theory, and ul-
timately develop reliable, accurate, and efficient algorithms for the computation of the density,
distribution, and quantile functions of the extreme eigenvalues of the classical random matrix en-
sembles. In particular:

• I plan on developing new FFT-like algorithm for the hypergeometric function of a matrix
argument (section 1.5). This algorithm, whose idea is analogous to that of Cooley and Tukey
[11], would make it possible to increase the size of the random matrices whose eigenvalue
distributions one can compute to 50 or even 100, up from 10;

1The above cited IEEE papers are available online from http://ieeexplore.ieee.org.



• I plan on proving new results in random matrix theory: formulas for the distributions of
the extreme eigenvalues of the complex Jacobi ensemble (section 1.6);

• I plan on performing detailed convergence and stability analysis for each density, distri-
bution, and quantile function for the extreme eigenvalues of each classical random matrix
ensemble (section 1.8);

• I plan on implementing the above algorithms efficiently in MATLAB, R, and SAS;
• I plan on incorporating results of several authors whose work provides marginal information

about the distributions of interest to us in cases when the explicit formulas and expressions
become numerically infeasible (sections 1.3 and 1.7).

The rest of this section is organized as follows. In section 1.1 I give definitions of the basic
objects in random matrix theory and multivariate analysis. In section 1.2 I list known formulas
for the distributions of the eigenvalues of random matrices that I intend to use in my algorithms.
In section 1.3 I describe the work of other authors that may have marginal, but important impact
in the development of the algorithms. In section 1.4 I outline the work I plan on performing and
outline reasons I believe it will be successful.

1.1. Basic definitions. In this section I present the definitions of the classical random matrix en-
sembles as well as the definitions of several objects commonly encountered in multivariate analysis—
the multivariate Gamma function, the generalized Pochhammer symbol, and the hypergeometric
function of a matrix argument.

1.1.1. Classical random matrix ensembles. The following definitions are taken directly from [38,
Def. 3.1.3, p. 82], [45], [13, p. 24], and [38, section 3.3, p. 109].

Definition 1 (Real (complex) Wishart ensemble Wm(n, Σ) (CWm(n, Σ))). Let the n × m real
(complex) Gaussian random matrix Z be distributed as N(0, In ⊗ Σ) (CN(0, In ⊗ Σ)). The matrix
A = ZT Z is called m×m real (complex) Wishart matrix with n degrees of freedom and covariance
matrix Σ.

Definition 2 (Laguerre ensemble). The m×m β-Laguerre matrix is defined as

L ≡ BBT , where B =


χ2a

χβ(m−1) χ2a−β

. . . . . .
χβ χ2a−β(m−1)

 , a >
β

2
(m− 1).

Definition 3 (Jacobi ensemble). Let A ∼ Wm(n1,Σ) and B ∼ Wm(n2,Σ), where n1 ≥ m and
n2 ≥ m, be independently distributed Wishart matrices. Then the matrix C ≡ A(A + B)−1 has
real Jacobi distribution. When A ∼ CWm(n1,Σ) and B ∼ CWm(n2,Σ), then C has complex Jacobi
distribution.

The Jacobi distribution is sometimes called multivariate beta distribution and is closely related
to the MANOVA ensemble [38] (which studies AB−1 instead of A(A + B)−1).

1.1.2. Other common objects in multivariate analysis. The raising factorial, the Gamma function,
and the (univariate) hypergeometric function have natural multivariate analogues.

A partition κ of an integer k ≥ 0 (denoted κ ` k) is a sequence κ = (κ1, κ2, . . .) such that
κ1 ≥ κ2 ≥ · · · ≥ 0 are integers and |κ| ≡ κ1 + κ2 + · · · = k.

The multivariate Gamma function of parameter α is defined as

Γ(α)
m (c) ≡ π

m(m−1)
2α

m∏
i=1

Γ
(

c− i− 1
α

)
for <(c) >

m− 1
α

.



The generalized Pochhammer symbol is defined as

(a)(α)
κ ≡

∏
(i,j)∈κ

(
a− i− 1

α
+ j − 1

)
.

The hypergeometric function of a matrix argument and parameter α > 0 is defined as

(1) pF
(α)
q (a1, . . . , ap; b1, . . . , bq;X) ≡

∞∑
k=0

∑
κ`k

(a1)
(α)
κ · · · (ap)

(α)
κ

k!(b1)
(α)
κ · · · (bq)

(α)
κ

· C(α)
κ (X).

where p ≥ 0 and q ≥ 0 are integers, X is an m × m complex symmetric matrix, and C
(α)
κ (X)

is the Jack function (also sometimes known as zonal polynomial or generalized Schur function)—a
symmetric, homogeneous polynomial of degree |κ| in the eigenvalues x1, x2, . . ., xm of X. Its formal
definition can be found in Stanley’s landmark paper [50].

1.2. Distributions of the eigenvalues of the classical ensembles. In this section I present
explicit formulas for the densities and/or distributions of the extreme eigenvalues of the classical
random matrix ensembles. These are typically expressed in terms of the hypergeometric function
of a matrix argument.

1.2.1. Wishart. Let A ∼ Wm(n, Σ) or A ∼ CWm(n, Σ) be a real or a complex Wishart matrix.
The values of α = 2 and α = 1 correspond to the real and complex cases, respectively. For the
distributions of the extreme eigenvalues of A we have

P (λmax(A) < x) =
Γ(α)

m

(
m−1

α + 1
)

Γ(α)
m

(
n+m−1

α + 1
) (

det
(

x
αΣ−1

))n
α

1F
(α)
1

(
n
α ; n+m−1

α + 1;− x
αΣ−1

)
;(2)

P (λmin(A) < x) = 1− etr (− x
α

Σ−1)
mt∑
k=0

∑
κ`k, κ1≤t

C
(α)
κ ( x

αΣ−1)
k!

,(3)

where (3) is only valid when t ≡ n−m+1
α − 1 is a nonnegative integer (see [38, Thm. 9.7.1 and Cor.

9.7.4] for the real case and [45, Cor. 3.3 and 3.5] for the complex case).
In the real case, the density of tr (A) is [38, p. 341]

f(x) = det(z−1Σ)−
n
2

∞∑
k=0

gnm
2

+k,2z(x)

k!

∑
κ`k

(
n
2

)(2)

κ
· C(2)

κ (I − zΣ−1),

where z is arbitrary and gr,2z(x) = e−x/2zxr−1/
(
(2z)rΓ(r)

)
, x > 0.

1.2.2. β-Laguerre. Let L be an m×m β-Laguerre matrix and let α = 2/β. Then

P (λmax(L) < x) =
Γ(α)

m

(
m−1

α + 1
)

Γ(α)
m

(
a + m−1

α + 1
) (x

2

)am

1F
(α)
1

(
a; a + m−1

α + 1;−x
2 I

)
.

If t = a− β
2 (m− 1)− 1 is a nonnegative integer, then the density of λmin(L) is proportional to

(see, e.g., [13, Thm. 10.1.1, p. 146])

f(x) = xtm · e−
mx
2 · 2F

(α)
0

(
− t, β m

2 + 1;− 2
xIm−1

)
.



1.2.3. Jacobi. Let C have a real or a complex Jacobi distribution (see Definition 3). Then the
distribution of λmax(C) is known in the real (α = 2) case from [10, eq. (61)]. I intend to prove that
this formula is true in the complex (α = 1) case (see section 1.6).

(4) P (λmax(C) < x)

=
Γ(α)

m (n1+n2
α )Γ(α)

m (m−1
α + 1)

Γ(α)
m (n1+m−1

α + 1)Γ(α)
m (n2

α )
· x

mn1
α · 2F

(α)
1 (n1

α , −n2+m−1
α + 1; n1+m−1

α + 1;xI).

The distributions of λmax(C) and λmin(C) are closely related:

(5) P (λmin(C) < x) = 1− P (λmin(C) > x) = 1− P (B(A + B)−1 < (1− x)I),

which is immediately evaluable using (4).

1.3. Previous algorithms and related results. In this section I survey existing algorithms for
computing the hypergeometric function of a matrix argument (section 1.3.1) as well as relevant
results which provide marginal information about the distribution of the eigenvalues of the random
matrix ensembles. The latter may be useful when the formulas of section 1.2 are numerically
infeasible and include include the work of Tracy–Widom and Iain Johnstone (section 1.3.2), Gross–
Richards (section 1.3.4), Butler–Wood (section 1.3.3), and William Chen (section 1.3.5). The plan
for exploiting these results is in section 1.7.

1.3.1. Previous algorithms. Edelman and I recently presented new algorithms [33] for approximat-
ing the hypergeometric function of a matrix argument. We exploited the combinatorial properties
of the Jack function [50] and derived an algorithm for computing the truncation

(6) pF
(α)
q (a1, . . . , ap; b1, . . . , bq;X) ≡

N∑
k=0

∑
κ`k

(a1)
(α)
κ · · · (ap)

(α)
κ

k!(b1)
(α)
κ · · · (bq)

(α)
κ

· C(α)
κ (X)

in time that grows only linearly with the size m of the matrix argument X. As a function of N ,
our algorithm’s cost grows as O(M2), where M ≡ {#κ| |κ| ≤ N} is the number of terms in (6).
Our algorithms efficiently (i.e., in less than 5 seconds) compute the distributions of the extreme
eigenvalues of a random matrix of size up to 10.

Our algorithms in [33] are exponentially faster2 than the previous best algorithms [21, 46]. In
section 1.5 I intend to develop a new FFT-like algorithm with complexity (essentially) O(M log M),
that will likely allow us to efficiently compute distributions with random matrices of size up to 50 or
100. The work of Johnstone [25] and Tracy–Widom [52] may then allow us to compute distributions
of the eigenvalues of random matrices of size larger than 100 in certain cases (sections 1.3.2 and
1.7).

1.3.2. Tracy–Widom limits. As the size of a Wishart matrix tends to infinity, its extreme eigenvalues
converge in distribution to the so-called “Tracy–Widom” limits [25, 52]. This property is universal
among many matrix ensembles [49].

For example, for the real Wishart ensemble, if A ∼ Wm(n, I), we define constants µ and σ

µ =
(√

n− 1
2 +

√
m− 1

2

)2

, σ =
(√

n− 1
2 +

√
m− 1

2

)  1√
n− 1

2

+
1√

m− 1
2

 1
3

.

If (m,n) →∞ in such a way that n/m → γ ≥ 1, then [25, Thm. 1.1]

λmax(A)− µ

σ

D→ W1,

2See [33, section 2] for a detailed analysis of the cost of the algorithms in [21, 46].
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Figure 1. Convergence of the largest eigenvalue of the real Wishart matrix to the
Tracy–Widom limit of order 1; m = size fo the matrix; n = 4m.

where W1 is the Tracy–Widom law of order 1. Its density is

F1(s) = exp
(
−1

2

∫ ∞

s
q(x) + (x− s)2q2(x)dx

)
, s ∈ R,

where q solves the (nonlinear) Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x), q(x) → Ai(x) as x → +∞,

and Ai(x) denotes the Airy function.
The function F1 (as well as the other Tracy–Widom limits, which are analogous) are readily

computable numerically [42].
In Figure 1 we plot the Tracy–Widom limit against the formula (2) for 2 ≤ m ≤ 6, and n = 4m.
Analogous Tracy–Widom limits apply to for the extreme eigenvalues of the complex Wishart

and Jacobi ensembles; see [25, sec. 1.5], as well as [2, 24, 26, 49] for details.

1.3.3. Laplace approximations. These were used by Butler and Wood [5] to approximate

1F
(2)
1 (a; c;X) = B ·

∫
0<Y <I

etr (XY )(detY )a−n+1
2 det(I − Y )c−a−n+1

2 (dY ),

2F
(2)
1 (a, b; c;X) = B ·

∫
0<Y <I

det(I −XY )−b(detY )a−n+1
2 det(I − Y )c−a−n+1

2 (dY ),

where B = Γ(2)
n (c)/

(
Γ(2)

n (a)Γ(2)
n (c − a)

)
, in order to approximate the value of pF

(α)
q for p = 1, 2,

q = 1, and α = 2 quite accurately in many cases.

1.3.4. The work of Gross and Richards. A very elegant formula is presented in [19] for the hyper-
geometric function of two matrix arguments in the complex case (α = 1) as a (scaled) determinant
of classical hypergeometric functions:

pF
(1)
q (a1:p; b1:q;X, Y ) ≡

∞∑
k=0

∑
κ`k

(a1)
(1)
κ · · · (ap)

(1)
κ

k!(b1)
(1)
κ · · · (bq)

(1)
κ

· C
(1)
κ (X)C(1)

κ (Y )

C
(1)
κ (I)

= B ·
det (pFq(a′1:p; b

′
1:q;xiyj))m

i,j=1

V (X)V (Y )
,(7)



where a′i = ai −m + 1, i = 1, 2, . . . , p, b′i = bi −m + 1, i = 1, 2, . . . , q, V (Z) =
∏

i>j(zi − zj), and
B is a scalar constant. Unfortunately, this formula applies only to the complex case (α = 1) and
only for two matrix arguments, none of which have double eigenvalues. Thus (7) is inapplicable
directly to any of the formulas in section 1.2 (since those involve the hypergeometric function of
one matrix argument), but see section 1.7.

1.3.5. The work of William Chen. Given a matrix C = A(A + B)−1 with real Jacobi distribution
(A ∼ Wm(2n1 + m + 1,Σ), B ∼ Wm(2n2 + m + 1,Σ)), William Chen [8, 9] presented tables for
the upper percentage points (in the 0.8–0.99 range) for m ≤ 6, n1 ≤ 7 and n2 ≤ 1000. While these
results are easily reproducible for m ≤ 6, n1 ≤ 7, and n2 ≤ 30 using the formulas from section 1.2,
this approach seems attractive for values of n2 between 30 and 1000.

1.4. Research plan. In this section I outline the results and algorithms I intend to prove and
develop as a part of this project. They include:

(1) Implementation of the density, distribution, and quantile functions for the extreme eigen-
values, the trace, etc., of the classical random matrix ensembles (section 1.4.1);

(2) New Cooley–Tukey type algorithm for computing the hypergeometric function of a matrix
argument (section 1.5);

(3) New formulas for the extreme eigenvalues of the complex Jacobi ensemble (section 1.6);
(4) Incorporation of the results described in section 1.3 in the limited circumstances in which

they apply (section 1.7);
(5) Convergence and stability analysis for the hypergeometric function of a matrix argument

(section 1.8);
(6) Efficient empirical sampling algorithms of eigenvalues of random matrices (section 1.9).

1.4.1. Algorithms for applied multivariate statistical analysis. I intend to design algorithms for
computing the density, distribution, and quantile functions of the extreme eigenvalues and the
trace of the Wishart, Jacobi, and Laguerre ensembles using the formulas from section 1.2 as well
as the ones from section 1.6 below.

1.5. New Cooley–Tukey type algorithm for computing the hypergeometric function of
a matrix argument. I intend to develop a new algorithm for approximating the hypergeometric
function of a matrix argument (1). The idea, which I describe below, is analogous to that of Cooley
and Tukey [11], and was inspired by the work of Püschel and Moura [44].

The idea is to compute a finite truncation of the series (1). If M is the number of terms in
this truncation, this new algorithm would cost O(M log M) (as opposed to our current algorithm
[30, 33] which costs, essentially, O(M2)).

The Cooley–Tukey FFT algorithm [11] is a fast O(n log n) algorithm for matrix-vector multipli-
cation by the DFT matrix Dn. The matrix Dn is the character table of the cyclic group. When
the size n of the group factors as n = km, the cyclic group structure implies [43, eq. (10)]:

Dn = Ln
m(Ik ⊗Dm)Tn

m(Dk ⊗ Im),

where Ln
m is the stride permutation matrix and Tn

m is a diagonal matrix whose exact form does not
concern us. The matrix Dn is thus decomposed as a product of simpler matrices. By exploiting
this recursive structure, the FFT ends up taking O(n log n) time instead of O(n2), which is what
a conventional matrix-vector multiplication algorithm would cost.

I intend to use the exact same idea for computing Jack functions, and illustrate this idea in the
case α = 1 (when the Jack function C

(α)
κ is the (scaled) Schur function sλ).



The Schur functions describe the characters of GLn(C), thus the connection with the Cooley–
Tukey idea. My algorithms for computing the Jack function [12, 33] use the identity [35, p. 72]

(8) sλ(x1, . . . , xn) =
∑
µ≤λ

sµ(x1, . . . , xn−1)x|λ/µ|
n ,

which can be written in matrix form

Sn(x1, . . . , xn) = Sn−1(x1, . . . , xn−1)Yn(xn),

where Sn and Sn−1 are vectors of Schur functions of n and n − 1 variables respectively. Thus the
problem of computing Schur (Jack) functions is once again a structured matrix-vector multiplication
problem.

The matrix Yn(xn) is dense, thus the cost of this evaluation is O(M2), where M is the number
of Schur functions we want to compute (i.e., the length of the vector Sn).

It turns out that the matrix Yn is highly structured. For example

Y2(x) =


1 x x2 x3

1 x x2 x x2 x3 x4

1 x x x2 x3 x2 x3 x4 x5

1 x x2 x x2 x3 x3 x4 x5 x6


and (8) implies

S2(x1, x2) = S1(x1)Y2(x2),
where S1(x1) ≡ (s(0), s(1), s(2), s(3)) = (1, x1, x

2
1, x

3
1), and

S2(x1, x2) ≡ (s(0), s(1), s(2), s(3), s(1,1), s(2,1), s(3,1), s(4,1), s(2,2),

s(3,2), s(4,2), s(5,2), s(3,3), s(4,3), s(5,3), s(6,3)).

Define

C(x) ≡


1 x x2 x3

1 x x2

1 x
1

 , and B ≡


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 .

Thus
Y2(x2) =

[
I4 x2B x2

2B
2 x3

2B
3

]
· (I4 ⊗ C(x2)).

This sparse structure is resemblant to the one in the FFT algorithm of Cooley and Tukey. We can
now multiply by Y2 in linear (O(M)) time by observing that C−1 is bidiagonal

C−1 =


1 −x

1 −x
1 −x

1

 .

When evaluating Jack functions for α 6= 1, the only difference is that the matrix C is now
Toeplitz

C =


1 x x2(α + 1) x3(α + 1)(2α + 1)

1 x x2(α + 1)
1 x

1

 ,

but C−1 is no longer bidiagonal in general. However, we can still multiply by C in O(n log n) time
by exploiting its Toeplitz structure [17, p. 193].

Therefore I expect to derive an algorithm for computing the truncated hypergeometric function
of a matrix argument in O(M log M) time.



1.6. The extreme eigenvalues of the complex Jacobi ensemble. I intend to establish the
following new result for the distribution of largest eigenvalue of the complex Jacobi ensemble. A
formula for the smallest eigenvalue would then follow automatically using (5).

Theorem 1. Let C = A(A + B)−1 have a complex Jacobi distribution, where A ∼ CWm(n1,Σ)
and B ∼ CWm(n2,Σ) are independently distributed Wishart matrices. Then (4) is true for α = 1.
Namely

(9) P (λmax(C) < x) =
Γ(1)

m (n1 + n2)Γ
(1)
m (m)

Γ(1)
m (n1 + m)Γ(1)

m (n2)
· xmn1 · 2F

(1)
1 (n1,m− n2;n1 + m;xI).

Proof. I intend to prove this result as follows.
(1) Without loss of generality we can assume that Σ = I (see Definition 3);
(2) The density of A is [22, section 8]

1

Γ(1)
m (n1)

· (detA)n1−m · etr (−A)(dA);

(3) The joint density of A and B is
1

Γ(1)
m (n1)Γ

(1)
m (n2)

· (detA)n1−m · (detB)n2−m · etr (−A−B)(dA)(dB);

(4) Let U ≡ L−1AL−T , where L is the Cholesky factor of A + B. The matrices U and C
thus have the same eigenvalues. By repeating, verbatim, the argument of Theorem 3.3.1 in
Muirhead [38, p. 109] we conclude that the density function of U is

(10)
Γ(1)

m (n1 + n2)

Γ(1)
m (n1)Γ

(1)
m (n2)

· (detU)n1−m · det(I − U)n2−m;

(5) To compute the distribution P (λmax(U) < t) of the largest eigenvalue of U , we integrate
the density (10) from 0 to tI:

(11) P (U < tI) =
Γ(1)

m (n1 + n2)

Γ(1)
m (n1)Γ

(1)
m (n2)

∫
0<U<tI

(detU)n1−m · det(I − U)n2−m(dU),

where B < C means that C −B is Hermitian positive definite;
(6) To evaluate the integral in (11), we establish the formula

2F
(1)
1 (a, b; c;X) =

Γ(1)
m (c)

Γ(1)
m (a)Γ(1)

m (c− a)

∫
0<Y <I

det(I −XY )−b(detY )a−m det(I − Y )c−a−m(dY ),

valid for ‖X‖ < 1, <(a) > m − 1, <(c − a) > m − 1 (this is the complex analogue of the
integral formula in Muirhead [38, eq. (5), p. 264]). The integration is over all Hermitian
positive definite matrices Y whose eigenvalues do not exceed 1. This formula is proved
analogously to Theorem 7.4.2 in Muirhead [38, p. 264] using Proposition 2.5 from [45] and
the identity (see, e.g., James [22, (90)])

det(I −X)−b = 1F
(1)
0 (b;X) =

∞∑
k=0

∑
κ`k

(b)(1)κ

k!
C(1)

κ (X).

Therefore

(12) 2F
(1)
1 (n1,m− n2;n1 + m;xI) =

Γ(1)
m (n1 + m)

Γ(1)
m (n1)Γ

(1)
m (m)

∫
0<Y <I

det(I − xY )n2−m(detY )n1−m(dY ).

To complete the proof, we need to make an m2-dimensional change of variables xY = U in (12)
and plug into (11). �
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Figure 2. The distribution of the largest eigenvalue of the complex Jacobi ensem-
ble. The solid line represents the result of a Monte–Carlo experiment with 10, 000
replications, while “⊕” represents (9).

Remark 1. To support the claim of Theorem 1, I performed a Monte–Carlo experiment and com-
pared the results with those of (9). The results in Figure 2 are a perfect visual match.

1.7. Using the results from section 1.3. I expect to derive algorithms for computing the func-
tions described in section 1.2 beyond the ranges of numerical feasibility of these formulas.

For example, Johnstone [25, section 1.4] showed that when Σ = I, the Tracy–Widom limits
imply reasonable approximations to the distributions of the largest eigenvalue of the finite Wishart
matrices. The recent work of El Karoui [28] may extend this implication beyond Σ = I.

The Butler–Wood approximations may be used in cases when the reported relative accuracy is
sufficient in applications.

I intend to investigate the applicability of my TN algorithms [32] to the computation of the
totally positive determinant in (7) and the possible removal of the singularity when Y → I.

I expect to utilize the methods of William Chen for the computation of the 2F1 function in those
circumstances that makes his approach feasible.

1.8. Stability and convergence analysis. I intend to perform detailed stability and convergence
analysis for the algorithms for each of the density, distribution, and quantile functions for the
extreme eigenvalues of the classical random matrix ensembles. In particular, relationships such as
the Kummer identity [38, p. 265, eq. (6)]

(13) 1F
(α)
1 (a; c;X) = etr X · 1F

(α)
1 (c− a; c;−X)

can greatly extend the region of numerical stability for the formula (2) in the presence of roundoff
errors (see Figure 3).
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Figure 3. Formula (2) for the distribution of the largest eigenvalue of the Wishart
ensemble is unstable for x > 16 (the “×” marks). Transforming (2) using the
Kummer identity (13) makes it stable (the “◦” marks). For reference, the result of
a Monte–Carlo experiment with 10, 000 replications is given in a solid line.

In addition to (7) and (13), I have collected a number of other identities involving the hyperge-
ometric function of a matrix argument [3, 15, 19, 20]:

1F
(α)
1 ( 1

α ; m
α ;X) = 1F

(α)
1 ( 1

α ; m
α ;X − tI) · et, if m = 3, α = 2;

2F
(α)
1 (a, b; c; I) =

Γ(α)
m (c)Γ(α)

m (c− a− b)

Γ(α)
m (c− a)Γ(α)

m (c− b)
;

2F
(2)
1 (a, b; c;xI) = Pf(A) (see [20] for the definition of A);

2F
(α)
1 (a, b; c;X) = 2F

(α)
1

(
c− a, b; c;−X(I −X)−1

)
· det(I −X)−b

= 2F
(α)
1 (c− a, c− b; c;X) · det(I −X)c−a−b;

2F
(α)
1 (a, b; c;X) =

Γ(α)
m (c)Γ(α)

m (c− a− b)

Γ(α)
m (c− a)Γ(α)

m (c− b)
· 2F

(α)
1

(
a, b; a + b + 1 + m−1

α − c; I −X
)
,

if a− i−1
α ∈ Z≤0 for some i = 1, 2, . . . ,m;

These provide alternative ways of computing the expressions in section 1.2. Albeit mathemati-
cally equivalent, their numerical behavior can differ dramatically.

As far as the convergence of the series (1) is concerned, at this time I do not know how to
optimally truncate it nor do I know how to automatically detect convergence. While the κ-term
does approach zero as |κ| → ∞, it need not monotonically decrease; it is unclear how to tell when
convergence sets in.

Whereas I do not expect to find an universal answer to these problems (for every p and q and
every value of α), I intend to analyze every formula in section 1.2 individually.

1.9. Efficient sampling of eigenvalues of random matrices. Say one wanted N samples of
the largest (or smallest) eigenvalue of a Wishart (with identity covariance), Laguerre, or Jacobi
matrix of size m. A direct and naive approach costs O(Nm3). I intend to develop algorithms that
cost only O(Nm) as follows.

The tridiagonal (scaled) β-Laguerre matrix L/β has the same eigenvalue distribution as a Wishart
matrix with identity covariance. Thus sampling the largest eigenvalue of L will cost O(m) and N
samples will cost O(Nm).
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Figure 4. Densities and distributions of various eigenvalues of small random matri-
ces computed using current techniques. On the left side, the empirical histogrammed
p.d.f.’s are compared with the theoretical predictions in solid line. On the right side,
the empirical c.d.f.’s (in solid line) are compared with the theoretical predictions (in
“◦” marks). If the research in this proposal is successful, we will have algorithms to
produce similar results for matrices of much larger size.

In the Jacobi case, we utilize the very elegant real tridiagonal β-Jacobi matrix C constructed by
Sutton [51]. We have C ≡ ZT Z, where

C ≡


cn −snc′n−1

cn−1s
′
n−1

. . .

. . . −s2c
′
1

c1s
′
1

 ,

with

ck ∼
√

Beta
(

n1−m+k
α , n2−m+k

α

)
, sk =

√
1− c2

k;

c′k ∼
√

Beta
(

k
α , n1+n2−2m+k+1

α

)
, s′k =

√
1− c′2k .

The β-Jacobi matrix has the same eigenvalue distribution as the Jacobi matrix, thus sampling
N largest (or smallest) eigenvalues again only costs O(Nm).

1.10. Possible impact of this research. The development of the algorithms described here
has been identified as a central research problem in a number of practical applications. I expect
such algorithms will have an extensive impact in each of those applications in areas ranging from
telecommunications to wireless networks to military applications [6, 7, 16, 18, 23, 27, 34, 36, 37,
39, 40, 47, 48].

Our recent algorithms from [33] have already had a practical impact in the area of automatic
target classification [23] and have been instrumental in the publications [1, 14].

Our current techniques allow us to compute certain densities and distribution of the extreme
eigenvalues (as well as the trace) of small random matrices, see Figure 4. If the research described



here is successful, one would be able to perform the same computations with much larger random
matrices. In certain cases, utilizing the Tracy–Widom limits, I expect to derive algorithms that
can accurate compute the distributions for any size random matrix.

Overall, I plan on developing and analyzing of over 40 different algorithms for computing density,
distribution, quantile, and sampling functions for the extreme eigenvalues and the trace of each
classical random matrix ensemble in both the real and the complex cases.

2. Other projects

I also plan on continuing work in the following areas:
• Stable O(n2) algorithm for the nonsymmetric tridiagonal eigenvalue problem.

The development of such an algorithm is a major topic of research in numerical linear
algebra [4]. I am planning on using the LR algorithm [41] with various shifting techniques
as means of stabilizing it.

• Accurate computations with totally nonnegative (TN) matrices.
I expect to extend my algorithms [32, 31] to TN matrices of less than full rank. If

successful, this will lead to the first algorithm for computing nontrivial Jordan structures
accurately. algorithm for computing nontrivial Jordan structures accurately.

• Research in matrix theory.
I plan on establishing a characterization, in the language of bidiagonal decompositions,

of what constitutes an oscillating system of vectors (i.e., a system of vectors such that
jth one has j − 1 sign changes). These vectors often describe the modes of vibration of
mechanical systems. In particular I expect to obtain simple proofs of the Schoenberg’s
theorem for the variation diminishing property of totally positive matrices, and prove that
the columns of the matrix Q of the QR decomposition of a totally positive matrix has the
same sign-oscillating properties as the eigenvector matrix of a TP matrix.

• Collaborations on practical problems. I plan on continuing collaborations with Vladimir
Druskin of Schlumburger Oilfield Research, Inc. in Boston in resolving accuracy issues in
their totally positive matrix problems related to circular resistor networks.
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