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Section I 8 Review

efinition 8 A surface is space that locally looks like 1122

ie Zoom in close it just looks like a

piece of paper

efinition A polygmal complex is a space obtained bygluing
together polygons edges and vertices where by

glue we mean that we identify edges w edges
and vertices w vertices could glue polygon to self



 

efinitions Let X polygonal complex w

X of vertices

E X of edges
e FCK of faces

The Euler characteristic of X is

X X VIX E X FIX



 

ropositions Let X and Y be polygonal complexes that are homeomorphic

to the same surface Then their Euler characteristics agree

X X X Y

Definition The Eulercharacteri stic of a surface Z is the Euler

characteristic of any polygonal cpx that is homeomorphi
to E

Remark To compute X E break 2 up into regions and coun

the of vertices edges and faces



 

examples I X S2 2

4 X T2 O

3 X Klein bottle O

4 X genus 2 surface z

5 X gemesg surface 2 2g



 

efinition A triangulationof a surface E is a polygonal

complex for E such that
i each face is a triangle and
i no face is glued to itself

Once glued each triangle has 3 unique

edges and 3 unique vertices
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non triangulation triangulation



 

ection 28 Vector fields

efinition A vector at a point x y in RZ is a choice of

direction and magnitude based at ix y
arrow at x y that lies in some direction and has

some magnitude1length
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Definition'sA vector field on 1122 is a continuous choice of vectors

at each point in 1122 really this should be a

smooth differentiable
choicecontinuous means that if two points are

infinitesimally close together in IR then the

vectors at these points have infinitesimally
close directions and magnitudes
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efinition A vector at a point p in a surface 2 is a

choice of direction along E and magnitude at the

point p
arrow at p that lies in some direction along E

and has some magnitude1length

nature8
0 p

emark Locally a vector on E just looks like a vector on TR



 

efinition8 A vector fieldon a surface E is a continuous choice

of vectors at each point in E

emark8 Locally a vector field on E just looks like a vector

field on 1122

e mark Intuitively a vector field on a surface I can be

described as follows 8

Vector fields describe how the wind blows on E

At a location p in E the vector at p gives the

direction the wind is blowing and how fast the wind

is blowing magnitude of the vector



 

Notation Let U to denote a vector field on a surface E

efinition A vector field is anihig if the

magnitudes of all vectors in the vector field

are non Zero

ie nowhere vanishing if and only if the wind

is blowing everywhere

efinition8 A of a vector field is a point p in E

whose associated vector has zero magnitude



 

efinitions A vector field is degenerate if all of its

Zeros are isolated
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Section 38 The Hairy Ball Theorem

roposition If a surface 2 admits a nowhere vanishing vector

field then X E O



 

roof8 1 Pick a triangulation of E such that
a the vector field is locally constant on each

triangle ie in a neighborhood about any

triangle the vector field looks constant
t i eit
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i Is

Not locally constant Locally constant



 

b it is perendicular to the vector field ie

each vector in V does not lie along any

edge in the triangulation

To 3
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2 To achieve a above we repeatedly divide our

triangles into smaller and smaller triangles

until locally our vector field looks constant

In outerspace the wind clearly bends andwraps
in a non constant manner but to us on the

surface it just appears to be in one fixed

direction

Dividing A's getting closer to the surface



 

3 To achieve b we start w the locally constant

triangulation above Then we can jiggle the
vertices and edges a little so that they are

perpendicular to the vector field

EE 3 to3 3
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4 Place a proton at each vertex and in the center

of each face
5 place an electron at the center of each edge
b Let the wind blow the charges

ie push the protons and the electrons along the

direction of the vector field some small amount

7 If a proton on a vertex moves into a face then

so do the electrons on the two adjacent edges
Either

i one edge electrongets pushed in
iil one vertex proton and two edgeelectronsget
pushed



 

8 If we only push a little the face protons will

not leave the faces
9 So after flowing each region contains the same

number of protons as electrons
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10 O protons electrons

V t F E

XIE D

corollary the sphere does not admit a nowhere vanishing vector

field

roof If it did then the above result X S2 O

But we know that X S2 3

So it does not admit a nowhere vanishing vector field



 

Section 48 Zeros and their indices

instruction Let V non degenerate vector field

ie V has isolated zeros

Let p be a point in E

Construct a polygon about p whose edges are

perendicular to the vector field V ie each

vector in V does not lie along any edge in the

polygon
One constructs such a polygon using similar

dividing and locally constant arguments as before



 

4 Place a proton on each vertex of the polygon an

electron on each edge of the polygon a proton in the

polygon

5 Push the charges along the vector field

efinition the index of V at p is the number

Ind V p protons electron

in polygon after pushing
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Ind V p 1

emma indu p does not depend on the choice of polygon that

surrounds p

emma 8 Given any polygonal cpx X for the disk X X I

Similar to proof of invar of X for surfaces



 

roof 8 I Notice that given any two polygons surrounding

p we may find a smaller polygon that contains

p and is contained in the other two polygons
2 to prove Iemma it suffices to show that if

one polygon is contain in another then theygive
the same index

3 Spse we have larger polygon 3 smaller polygon

Using the edges of thepolygons add more edges

in between them to triangulate the region between

the two polygons
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4 As before we can arrange for this triangulation
to 8

i have V be locally constant on each

triangle
ii be perendicular to the vector field V



 

5 Place a proton in each face and on each vertex

place an electron on each edge
6 By the lemma

I X polygonal gox for diskgivenby our triangulation

protons electrons
7 Push the particles along the vector field
8 Like above the charge left on each triangle is zero

9 I total charge

charge in smaller polygon

charge in triangles
charge that exited larger polygon

indsman V p t O I indiarge V p



 

10 ind V p wrt larger polygon equals
ind V p wrt smaller polygon D

theorem Let V be a non degenerate vector field on E

X E
p

ind V p
of V



 

roof's 1 Fix polygons about each zero whose edges are

perendicular to the vector field V
2
Triangulate the remainder of E so that all edges
are perendicular to the vector field and so

V is locally constant on each triangle
3 Place a proton in each face and on each vertex

Place an electron on each edge
4 Push the particles along the vector field
5 As before charge in each triangle is zero

By definition charge in each polygon is the index
7 X E total charge E ind V p D

p Zeroof V


