Le	ectu	re [#]	8										
Outl	ine	1)	Rer	riew									
		2)		ne cor	nplex	analy	rsis						
		3)		Idamei				JA f	qebra	1			
		4)		nplex									
				U	J								

Section 1.8 Review
Definition: A closed curve in
$$S' = circle is a Continuous$$

 $Prop : S' \rightarrow S'$.
 $Prop :$

										+	+	J	I	·		
Lem	ma [°]	(در	irve l	_ifting) (tiven	٥	clos	ied	ديدري	e V	: 5'	>	S',		
				exist												
				fl												
				Y(J			
		Ĺ		, is												
Ideo	0 2 0		¥ (t	.) =	Acci	ımula	ted.	angle	2 of	rot	at ion	• f	૪ (£)		
				sure												
				• rot							.reas	es				
				rot					•				ease	S		
														· · · · · · · · · · · · · · · · · · ·	·	

Sʻ

						+
I)	For e	sch Spin	[0,1]	H(s, +)	defines	a closed
2)				y of cur	ves that	interpolate
3)				zes how v	se con	
						S' 1 6
				ل		
		J				
Two	o closed	curves	ß:S'-	→ S' an d	γ: s'	→ S'
				J.	J	
	2) 3)	2) H para between 3) Intuitin push, c He ima Two closed	curve in S'. 2) H parameterized between <i>B</i> and 3) Intuitively, H push, compress, He image of X Two closed curves	 curve in S'. 2) H parameterizes a famile between B and X. 3) Intuitively, H parameteri push, compress, deform the He image of X in S'. Two closed curves B:S'- 	 curve in S¹. 2) H parameterizes a family of cur between <i>B</i> and X. 3) Intuitively, H parameterizes how v push, compress, deform the image of <i>N</i> in S¹. Two closed curves <i>B</i> : S¹ → S¹ and 	 2) H parameterizes a family of curves that between <i>B</i> and <i>X</i>. 3) Intuitively, H parameterizes how we can push, compress, deform the image of <i>B</i> in

Example °	$f(x) = x^{77} - 17x^{66} + 42x - 26$
•	4eg(F) = 77
	$\Rightarrow \qquad \qquad$
Remark:	• Not all real polynomials have real roots
	If $f(x) = 0$, then $0 = x^2 + 1 = -x^2 = -1$.
	But the square of a real number is never negative
	=> 7 has no roots
	• There just aren't enough real numbers.
	• If $i = \sqrt{-1}$, then $f(i) = 0$ so f would have a root.
	· Need to make sense of such numbers.

										-					
Definit	ion ^{\$}	The	com	plex	numb	ers	C.	is fh	e se	et					
								} =			(×,	y) ;,	IR	2 }	
								ber i							
								are						/	
							•	real							
								imagir	•						
			/					J							
Notati	on •	We	w:ll	off	en 1	write		2 =	X. + ·	îγ	\mathbf{t}_{0} ,	Jenot	re a	•	
					mber.										
			•												

We ca	m add con	nplex numbers	3	
				; (y. + y.)
We ca	m multiply	complex nu	mbers by re	quiring $j^2 = -l$
	= X•×.	+ i (xoy, 1 +	i(yox,) + i	2 Yo Yi
دې	(2+i)·(7	7 - 7;) = 14	- 14: + 7: - 7:	= 21 - 7;
The no	orm of a	complex num	nber X+iy	is
	() () () () () () () () () () () () () ($(X_{o} + iy_{o})$ $(X_{o} + iy_{o})$ $(X_{o} + iy_{o}) \cdot (X_{o} + iy$	$(X_{0} + iy_{0}) + (X_{1} + iy_{1})$ $(X_{0} + iy_{0}) + (-25 - 2i)$ We can multiply complex nu $(X_{0} + iy_{0}) \cdot (X_{1} + iy_{1})$ $= X_{0}X_{1} + i(X_{0}y_{1}) + i(X_{0})$ $= X_{0}X_{1} - y_{0}y_{1} + i(X_{0})$ $(2 + i) \cdot (7 - 7i) = 14$ The norm of a complex num	We can add complex numbers $(X_{0} + iy_{0}) + (X_{1} + iy_{1}) = (X_{0} + X_{1}) + (X_{0} + iy_{1}) = (X_{0} + X_{1}) + (X_{0} + iy_{1}) + (Y_{0} + 2S - 2i) = -7 + Si$ We can multiply complex numbers by re $(X_{0} + iy_{0}) \cdot (X_{1} + iy_{1}) = X_{0}X_{1} + i(X_{0}y_{1}) + i(Y_{0}X_{1}) + i$ $= X_{0}X_{1} - Y_{0}y_{1} + i(X_{0}y_{1} + X_{1}y_{0})$ $\Rightarrow (2+i) \cdot (7 - 7i) = 14 - 14i + 7i - 7i^{3}$ The norm of a complex number $X + iy_{1}$ $ X + iy = \sqrt{X^{2} + y^{2}}$

Remarks If
$$|u+iv| \neq 0$$
, then we can divide $x+iy$ by $u+iv$
 $x+iy$, $u-iy$
 $u+iv$, $u-iv$, $u-iv$
 $u+iv$, $u-iv$, $u-iv$
 $u+iv$, $u-iv$, $u^2 - iwv + iwv - i^2v^2$
 $= \frac{(x+iy) \cdot (u-iv)}{u^2 + v^2}$
 $= \frac{(x+iy) \cdot (u-iv)}{|u+iv|^2}$ (*)
We can make sense of (*) since we can just
scale the real and imaginary parts of numerator by
the denominator, which is a real number

Remark:	ב	<i>fust</i> a	as w	e cai	n to	lk a	rport	f cu	ls fr	01-	R.	to Tr	ζ,	
	ι	ve c	an ta	lk.	abou	t fo	in S	from	C	to	C.			
Definition [°]		fcn						-				a c	omple	x
	n	umber							ber	\$(z).			
		Ls e	.g .	f (z) =	2²	- 17	2						

Remarks One way to define the fan
$$e^{\kappa} : R \rightarrow R$$
 is via taylor's
series *
 $e^{\kappa} = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad n! = n \cdot (n-1)$
 $(n-2)$
 $(n-2)$

lemark [®]	So	a Ta	ylor se	ries is a	approximat	red by a s	eq. of polyw	iomials.
							convergence	
							s to conver	
			finite.					
		_			s required	to make	e this rigor	ouS.
							e complex	
						omplex nu		
Definition [®]	The	. compl	ex expo	mential	fcn is	the fon	e ^z : C →	C
	giv	ven by						
				$e^2 = \sum_{n=1}^{2}$	2"			
				* **	=0 N!			

4) Define
$$H : [0,1] \times S' \rightarrow S'$$
 via

$$H(S,t) = \frac{f(s \cdot e^{it})}{|f(s \cdot e^{it})|}$$
5) Notice that

$$H(0,t) = f(0)/|f(0)| = constant$$

$$H(1,t) = f(t)$$

$$\Rightarrow f(t)$$

 $f(z) = z^2 + 2$ $s^2 \cdot f(z/s) = s^2 \cdot (\frac{z^2}{s^2} + z)$ 6) Notice that s^{+} f(z/s)= $2^2 \div S^2.2$ $= 2^{n} + a_{n-1} \cdot 2^{n-1} \cdot S + a_{n-2} 2^{n-2} \cdot S^{2} + ... + a_{n-1} 2 S^{n-1} + a_{0} S^{n}$ So when s = 1, $S^{n} f(z/s) = f(z)$ So when s=0, $S^n f(z/s) = Z^n$ 7) Define G: [0,1] x S' -> S' via $G(s,t) = \frac{s^n \cdot f(e^{it}/s)}{|s^n \cdot f(e^{it}/s)|}$

81	G (0, t)	=	$(e^{it})'$	`/ (e	e ^{it}) ⁿ							
		11	(e ^{int})/	(ein	t)						
		=	cos (n	t) +	i sin((nt)	_					
			cos (n									
		<u>z</u> -	cos (n	t) +	isin (r	rt)						
			cos²(n	t) + s	in ² (n	t)		- c	urve n fin c	mes (ps ps	8
		=	(cos (nt), s	sin (n	4])			c	orcle		
9)	G (1, t) = •	૪ (૨)									
۱۰)	=> c	eq (?	8) = n	- = d	eq (7	f)						
	⇒ O				$\mathbf{\nabla}$		a	contre	.dict	ion.		IJ
						-						

Definition⁵ · Let
$$Z_{1},...,Z_{n}$$
 be a set of variables.
• A pronomial in Z_{1} is a polynomial of the form
 $a \cdot Z_{1}^{m}$
where a is a complex number and m is a non-neg.
integer.
• A polynomial in $Z_{1},...,Z_{n}$ is a finite product and
sum of monomials in the Z_{1} .
• $f(Z_{1},Z_{2}) = Z_{1}^{m}Z_{2}^{m} + TZ_{1}^{m} + 16Z_{2}^{m}Z_{1}^{m}$.
• $f(Z_{1},Z_{2}) = Z_{2}^{m} + Y_{2}^{m} + Z_{1}^{m}$
• $f(Z_{1},Z_{2}) = Z_{2}^{m} + Y_{2}^{m} + Z_{1}^{m}$
• $f(Z_{1},...,Z_{n}) = Z_{2}^{m} + Z_{3}^{m}$
• $C(Z_{1},...,Z_{n}) = Z_{2}^{m} + Z_{3}^{m}$
• $C(Z_{1},...,Z_{n}) = S_{2}^{m} + Z_{3}^{m}$

Remark: If g is in
$$\mathbb{I}(f)$$
, then $\mathbb{I}(g) \subseteq \mathbb{I}(f)$
 $\Rightarrow \rho$ is in $\mathbb{I}(g) \Rightarrow \rho = g \cdot h$,
 g is in $\mathbb{I}(f) \Rightarrow g = f \cdot h_2$
 $\Rightarrow \rho = f \cdot h, \cdot h_2$
 $\Rightarrow \rho$ is in $\mathbb{I}(f)$
If $\mathbb{I}(g) \subseteq \mathbb{I}(f)$, then $\mathbb{V}(g) \supseteq \mathbb{V}(f)$.
 $\Rightarrow \mathbb{I}(g) \subseteq \mathbb{I}(f) \Rightarrow g \in \mathbb{I}(f)$
 $\Rightarrow if (f) \Rightarrow g \in \mathbb{I}(f)$
 $\Rightarrow if f = \mathbb{I}(f)$
 $\Rightarrow if f$

