Lecture \#8

Outline: 1) Review
2) Some complex analysis
3) Fundamental Theorem of Algebra
4) Complex algebraic varieties

Section 1: Review

Definition: A closed curve in $S^{\prime}=$ circle is a continuous
${ }^{(1)}$ map $\gamma: S^{\prime} \longrightarrow S^{\prime}$.
(1) We send every pt in S^{\prime} to a point in S^{\prime}.
(2) "Contimosus" = we send points infintesimally close together in S^{\prime} to points infintesimally close together in S^{\prime}.
\leadsto We map S^{\prime} into $S^{\prime} w /$ out ripping or cutting :-

Remark: Equivalently, a map $\gamma: S^{\prime} \rightarrow S^{\prime}$ may be viewed as a continuous map

$$
\gamma:[0,2 \pi] \longrightarrow S^{\prime}
$$

$w /$

$$
\gamma(0)=\gamma(2 \pi)
$$

4 i.e., a map of a circle is just a map of an interval that connects up at its end points.

Lemma: (Curve Lifting) Given a closed curve $\gamma: S^{\prime} \rightarrow S^{\prime}$, there exists a function $f:[0,2 \pi] \rightarrow \mathbb{R}$ st

1) $f(0)=f(2 \pi)+2 \pi \cdot n$ for some integer n
2) $\gamma(t)=(\cos (f(t)), \sin (f(t)))$
$\rightarrow f$ is called a lift of γ to \mathbb{R}.

Idea: $\quad f(t)=$ Accumulated angle of rotation of $\gamma(t)$ measured w/ respect to $(1,0)$
\leadsto rotate clockwise angle decreases
\rightarrow rotate counter clockwise angle increases

Definition: The degree of a closed curve $\gamma: S^{\prime} \rightarrow S^{\prime}$ is

$$
\operatorname{deg}(\gamma)=(f(2 \pi)-f(0)) / 2 \pi
$$

where f is any lift of γ to \mathbb{R}.

Remark: $\quad \operatorname{deg}(\gamma)=$ signed \# of times γ wraps around the circle

Definition: Two closed curves $\beta: S^{\prime} \rightarrow S^{\prime}$ and $\gamma: S^{\prime} \rightarrow S^{\prime}$ are homotopic if there is a continuous map $H:[0,1] \times S^{\prime} \longrightarrow S^{\prime}$ satisfying

1) $H(0, t)=\beta(t)$
2) $H(1, t)=\gamma(t)$

Remark: 1) For each s_{0} in $[0,1], H\left(s_{0}, t\right)$ defines a closed curve in S^{\prime}.
2) I parameterizes a family of curves that interpolate between β and γ.
3) Intuitively, H parametesizes how we can push, compress, deform the image of β in S^{\prime} to the image of γ in S^{\prime}.

Theorem: Two closed curves $\beta: s^{\prime} \rightarrow s^{\prime}$ and $\gamma: s^{\prime} \rightarrow s^{\prime}$ are homotopic if and only if $\operatorname{deg}(\beta)=\operatorname{deg}(\gamma)$

Section 2: Some complex analysis

Definition: - A real polynomial is a $\operatorname{fon} f: \mathbb{R} \rightarrow \mathbb{R}$ of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

where each a_{i} is a real number.

- When $a_{n} \neq 0$, we say the degree of f is

$$
\operatorname{deg}(f)=n
$$

- If $f\left(x_{0}\right)=0$, then we say x_{0} is a root of f.

Example: $\quad f(x)=x^{77}-17 x^{66}+42 x-26$
$\Leftrightarrow \quad \operatorname{deg}(f)=77$
$\Leftrightarrow f(1)=0 \Rightarrow 1$ is a root.

Remark: - Not all real polynomials have real roots

- $f(x)=x^{2}+1$

If $f(x)=0$, then $0=x^{2}+1 \Rightarrow x^{2}=-1$.
But the square of a real number is never negative $\Rightarrow f$ has no roots

- There just aren't enough real numbers.
- If $i=\sqrt{-1}$, then $f(i)=0$ so f would have a soot.
- Need to male sense of such numbers.

Definition: The complex numbers \mathbb{C} is the set

$$
\mathbb{C}=\left\{(x, y) \text { in } \mathbb{R}^{2}\right\}=\left\{x+i y \mid(x, y) \text { in } \mathbb{R}^{2}\right\}
$$

is ie, a complex number is a formal sum $x+i y$ where x and y are real numbers.
$4 x$ is called the real part of $x+i y$
sly .- - imaginary

Notation: We will often write $z=x+i y$ to denote a complex number.

Remark: We can add complex numbers

$$
\begin{aligned}
& \left(x_{0}+i y_{0}\right)+\left(x_{1}+i y_{1}\right)=\left(x_{0}+x_{1}\right)+i\left(y_{0}+y_{1}\right) \\
\Leftrightarrow & (18+7 i)+(-25-2 i)=-7+5 i
\end{aligned}
$$

Remark: We can multiply complex numbers by requiring $i^{2}=-1$

$$
\begin{aligned}
& \left(x_{0}+i y_{0}\right) \cdot\left(x_{1}+i y_{1}\right) \\
& \quad=x_{0} x_{1}+i\left(x_{0} y_{1}\right)+i\left(y_{0} x_{1}\right)+i^{2} y_{0} y_{1} \\
& \quad=x_{0} x_{1}-y_{0} y_{1}+i\left(x_{0} y_{1}+x_{1} y_{0}\right) \\
& \Leftrightarrow(2+i) \cdot\left(z-z_{i}\right)=14-14 i+z_{i}-z_{i}^{2}=21-7 i
\end{aligned}
$$

Definition: The norm of a complex number $x+i y$ is

$$
|x+i y|=\sqrt{x^{2}+y^{2}}
$$

Remark: If $|u+i v| \neq 0$, then we can divide $x+i y$ by $u+i v$

$$
\begin{align*}
\frac{x+i y}{u+i v} \cdot \frac{u-i y}{u-i v} & =\frac{x+i y}{u+i v} \cdot \frac{u-i y}{u-i v} \\
& =\frac{(x+i y) \cdot(u-i v)}{u^{2}-i v v+i v v-i^{2} v^{2}} \\
& =\frac{(x+i y) \cdot(u-i v)}{u^{2}+v^{2}} \\
& =\frac{(x+i y) \cdot(u-i v)}{|u+i v|^{2}}
\end{align*}
$$

We can make sense of $(*)$ since we can just scale the real and imaginary parts of numerator by the denominator, which is a real number

Remark: Just as we can tole about fans from \mathbb{R} to \mathbb{R}, we can talk about fans from \mathbb{C} to \mathbb{C}.

Definition: A fan $f: \mathbb{C} \rightarrow \mathbb{C}$ is an assignment of a complex number z to the complex number $f(z)$.
\Leftrightarrow e.g. $f(z)=z^{2}-17$

Definition: - A complex polynomial is a fan $f: \mathbb{C} \rightarrow \mathbb{C}$ of the form

$$
\begin{aligned}
& \text { egg. } \quad f(x)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0} \\
& f(z)=(1-i) .
\end{aligned}
$$

where each a_{i} is a complex number.

- When $a_{n} \neq 0$, we say the degree of f is

$$
\operatorname{deg}(f)=n
$$

- If $f\left(z_{0}\right)=0$, then we say z_{0} is a root of f.

Remark: -One way to define the fan $e^{x}: \mathbb{R} \rightarrow \mathbb{R}$ is via taylor's series:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \longrightarrow n!=\begin{array}{r}
\\
\cdots(n-2) \cdot \\
\cdots(2)(1)
\end{array}
$$

- Terms of a Taylor's series gives sucessive approximations to the actual fan.

$$
\begin{aligned}
& \leftrightarrow \sum_{n=0}^{0}(1)^{n} / n!=1 \\
& \sum_{n=0}^{1}(1)^{n} / n!=1+1=2 \\
& \sum_{n=0}^{2}(1)^{n} / n!=1+1+\frac{1}{2}=2.5 \\
& \sum_{n=0}^{3}(1)^{n} / n!=1+1+\frac{1}{2}+\frac{1}{6}=2 . \overline{666} \\
& \sum_{n=0}^{4}(1)^{n} / n!=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}=2.708 \overline{333}
\end{aligned}
$$

Remark: So a Taylor series is approximated by a seq. of polynomials. These Taylor series have to satisfy some "convergence" properties, ie, this infinite sum alway needs to converge to something finite.
\leftrightarrow So some calculus is required to make this rigorous.
\rightarrow The calculus also carries over to the complex case.
\Rightarrow Use Taylor series w/ complex numbers.

Definition: The complex exponential fan is the for $e^{z}: \mathbb{C} \rightarrow \mathbb{C}$ given by

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Lemma: $\quad e^{i \theta}=\cos (\theta)+i \sin (\theta)$ for θ a real number.

Proof: We use the Taylor series for \sin and \cos and compute.

$$
(i)^{2 k}
$$

$$
\left((3)^{2}\right)^{r}
$$

$$
(-1)^{n}
$$

$$
\begin{aligned}
e^{i \theta} & =\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!} \\
& =\sum_{k=0}^{\infty} \frac{i^{2 k} \theta^{2 k}}{(2 k)!}+\sum_{l=0}^{\infty} \frac{i^{2 l+1} \theta^{2 l+1}}{(2 k+1)!} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k}}{(2 k)!}+i \sum_{l=0}^{\infty} \frac{(-1)^{\ell} \theta^{2 l+1}}{(2 k+1)!} \\
& =\cos (\theta)+i \sin (\theta)
\end{aligned}
$$

Cordlary: $\quad e^{i \pi}=-1$

Remark: - When we identify \mathbb{C} w/ \mathbb{R}^{2} via $x=i y \leftrightarrow(x, y)$, the norm of $x+i y$ agrees $w /$ the norm of (x, y) $\Leftrightarrow|(x, y)|=$ distance from (x, y) to the origin

- When we identify $\mathbb{C} w / \mathbb{R}^{2}$ the unit circle in \mathbb{R}^{2} becomes

$$
\begin{aligned}
S^{\prime}=\{z| | z \mid=1\} & =\{\cos (t)+i \cdot \sin (t) \mid 0 \leq t \leq 2 \pi\} \\
& =\left\{e^{i t} \mid 0 \leq t \leq 2 \pi\right\}
\end{aligned}
$$

Section 3: Fundamental Theorem of Algebra

Theorem: Every complex polynomial w/ degree >0 has a root.

Proof: \quad 1) Consider a polynomial

$$
f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

Note $f(z)=0$ if and only if $f(z) / a_{n}=0$
So it suffices to assume $a_{n}=1$
2) Spae by way of contradiction that f has no roots. 4 ie, $f(z) \neq 0$ for all z in \mathbb{C}.
3) Define $\gamma: s^{\prime} \rightarrow s^{\prime}$ via

$$
\gamma(t)=\frac{f(\cos (t)+i \sin (t))}{|f(\cos (t)+i \sin (t))|}=\frac{f\left(e^{i t}\right)}{\left|f\left(e^{i t}\right)\right|}
$$

Picture:

4) Define $H:[0,1] \times S^{\prime} \rightarrow S^{\prime}$ via

$$
H(s, t)=\frac{f\left(s \cdot e^{i t}\right)}{\left|f\left(s \cdot e^{i t}\right)\right|}
$$

5) Notice that

$$
\begin{aligned}
& H(0, t)=f(0) /|f(0)|=\text { constant } \\
& H(1, t)=\gamma(t)
\end{aligned}
$$

$\Rightarrow \gamma$ is homotopic to a constant curve

$$
\Rightarrow \operatorname{deg}(\gamma)=0
$$

6) Notice that

$$
f(z)=z^{2}+2
$$

$$
s^{2} \cdot f(z / s)=s^{2} \cdot\left(\frac{z^{2}}{s^{2}}+2\right)
$$

$$
\begin{aligned}
& s^{n} f(z / s) \\
&==z^{2}+s^{2} \cdot 2 . \\
&=z^{n}+a_{n-1} \cdot z^{n-1} \cdot s+a_{n-2} z^{n-2} \cdot s^{2}+\ldots+a_{1} z s^{n-1}+a_{0} s^{n}
\end{aligned}
$$

So when $s=1, \quad s^{n} f(z / s)=f(z)$
So when $s=0, s^{n} f(z / s)=z^{n}$
7) Define $G:[0,1] \times S^{\prime} \longrightarrow S^{\prime}$ via

$$
G(s, t)=\frac{s^{n} \cdot f\left(e^{i t} / s\right)}{\left|s^{n} \cdot f\left(e^{i t} / s\right)\right|}
$$

81

$$
\begin{aligned}
G(0, t) & =\left(e^{i t}\right)^{n} /\left|\left(e^{i t}\right)^{n}\right| \\
& =\left(e^{i n t}\right) /\left|\left(e^{i n t}\right)\right| \\
& =\frac{\cos (n t)+i \sin (n t)}{|\cos (n t)+i \sin (n t)|} \\
& =\frac{\cos (n t)+i \sin (n t)}{\cos ^{2}(n t)+\sin ^{2}(n t)} \\
& =(\cos (n t), \sin (n t))
\end{aligned}
$$

clucue uraps n times arownd circle
9) $G(1, t)=\gamma(t)$
10) $\Rightarrow \operatorname{deg}(\gamma)=n=\operatorname{deg}(f)$
$\Rightarrow 0=\operatorname{deg}(\gamma)=n \neq 0$, a contradiction.

Section 4: Complex algebraic varieties

$$
\begin{aligned}
f(z) & =z^{n} \\
W(f) & =\text { origin } \\
& =\text { single } p^{t} .
\end{aligned}
$$

Remark: Given a polynomial $f: \mathbb{C} \rightarrow \mathbb{C}$, the set of zeros

$$
\Downarrow(f)=\{z \text { in } \mathbb{C} \mid f(z)=0\}
$$

is some finite set of points.
c Domain is 2-dim'l, but the constraint cuts down the dimension by 2 .

Definition: - Let z_{1}, \ldots, z_{n} be a set of variables.

- A monomial in Z_{i} is a polynomial of the form

$$
a \cdot z_{i}^{m}
$$

where a is a complex number and m is a non-neg. integer.

- A polynomial in z_{1}, \ldots, z_{n} is a finite product and sum of monomials in the Z_{i}.
$\Leftrightarrow f\left(z_{1}, z_{2}\right)=z_{1}^{2} z_{2}^{1}+7 z_{1}^{8}+16 z_{2}^{32} z_{1}^{1}$.

$$
\begin{aligned}
& f(x, y, z)=x^{2}+y^{2}+z^{2} \\
& f\left(z_{1}, \ldots, z_{n}\right)=z_{2}+z_{3}
\end{aligned}
$$

- $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]=$ set of polynomials in z_{1}, \ldots, z_{n}
c Add, multiply polynomials \Rightarrow algebraic structure.

Remark: Notice that a polynomial in z_{1}, \ldots, z_{n} gives a $f(n$

$$
\left.f: \mathbb{C}^{n=\mathbb{R}^{2 n}} \mathbb{C} \mathbb{C} \times \ldots \times \mathbb{C}\right\} n \text {-copies. }
$$

via evaluating f at $\left(z_{1}, \ldots, z_{n}\right)$ in \mathbb{C}^{n}.

Remark: The zero locus of f is the subset of \mathbb{C}^{n} given by

$$
W(f)=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid f\left(z_{1}, \ldots, z_{n}\right)=0\right\}
$$

\& $w /$ probability $1, W(f)$ for a random f will be $(2 n-2)$-dimil and, in fact, a $(2 n-2)$-manifold

- locally looks like $\mathbb{R}^{2 n-2}$
c surface is a 2 -manifold

Example: Let $h(z)$ be a degree n polynomial.
Then $w /$ probability $1, \quad f\left(z_{1}, z_{2}\right)=z_{2}^{2}-h\left(z_{1}\right)$ will be a surface (w / some open ends) w / g donut holes, where

$$
\begin{array}{lll}
\text { • } g=\frac{n-1}{2} & , n=0 d d \\
\text { - } g=\frac{n-2}{2} & , n=\text { even }
\end{array}
$$

Definition: The ideal generated by f is the subset

$$
\begin{aligned}
& \quad \mathbb{I}(f) \subseteq \mathbb{C}\left[z_{1}, \ldots, z_{n}\right] \quad \text { polys w/ a factor } \\
& \text { given by by } f . \\
& \mathbb{I}(f)=\left\{g \text { in } \mathbb{C}\left[z_{1}, \ldots, z_{n}\right] \mid g=f \cdot h \text { for some poly. } h\right\}
\end{aligned}
$$

Remark: - If g is in $\mathbb{I}(f)$, then $\mathbb{I}(g) \leq \mathbb{I}(f)$ $\Leftrightarrow p$ is in $\mathbb{I}(g) \Rightarrow p=g \cdot h_{1}$
g is in $\mathbb{I}(f) \Rightarrow g=f \cdot h_{2}$

$$
\Rightarrow p=f \cdot h_{1} \cdot h_{2}
$$

$$
\Rightarrow p \text { is in } \mathbb{I}(f)
$$

- If $\mathbb{I}(g) \leq \mathbb{I}(f)$, then $V(g) \geq \mathbb{V}(f)$.

$$
\Leftrightarrow \mathbb{I}(g) \leq \mathbb{I}(f) \Rightarrow g \in \mathbb{I}(f)
$$

So if $f\left(z_{1}, \ldots, z_{n}\right)=0$, then

$$
g\left(z_{1}, \ldots, z_{n}\right)=f\left(z_{1}, \ldots, z_{n}\right) \cdot h\left(z_{1}, \ldots, z_{n}\right)=0
$$

Theorem: If $V(g) \geq \mathbb{V}(f)$, then $\mathbb{I}\left(g^{k}\right) \leq \mathbb{I}(f)$ for some te.

Remark:

$$
\underset{\substack{\text { Topology } \\ \mathbb{V}(f)} \underset{\substack{\text { each } \\ \text { other }}}{\text { Determine }} \quad \text { Algebra }}{\mathbb{I}(f)}
$$

Remark:

$$
\begin{aligned}
f(x, y) & =x^{2}+y^{2}-1 \\
\mathbb{W}_{\mathbb{R}}(f) & =\left\{(x, y) \text { in } \mathbb{R}^{2} \mid f(x, y)=0\right\} . \\
& =\left\{(x, y) \mid x^{2}+y^{2}-1=0\right\} \\
& =\left\{(x, y) \mid 1=x^{2}+y^{2}\right\} . \\
& =\text { circle. } \\
& =1 \text {-din'l space }
\end{aligned}
$$

$V_{\mathbb{R}}(f)$ is $(n-1)$-dimil space where

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R} .
$$

