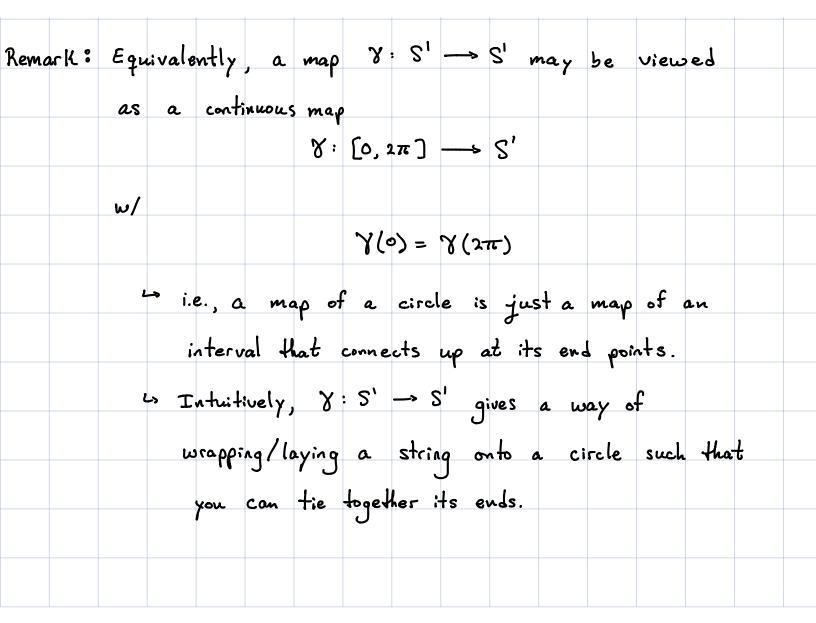
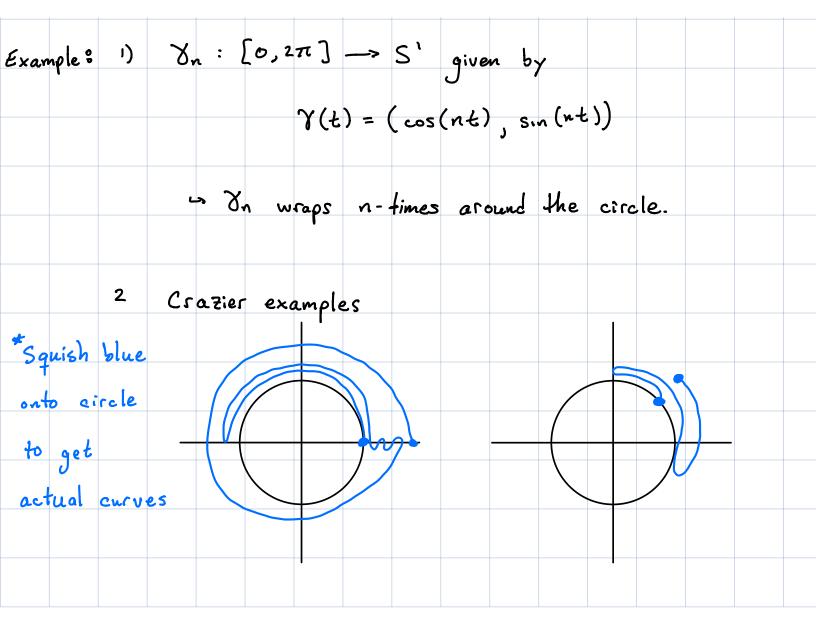
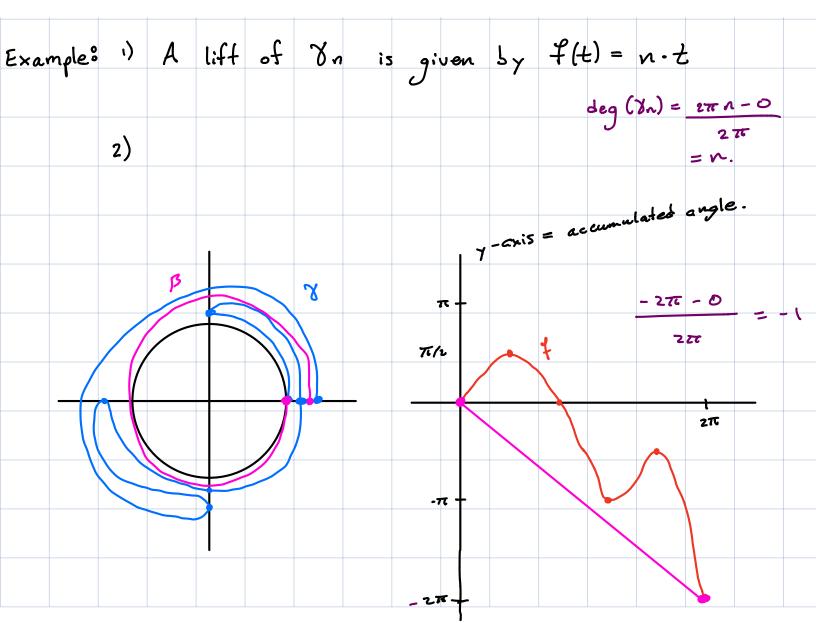
											 1	 	
Lec	ctu	e #	7										
Outli	ne°	り	Rev	riew	from	last	tim	e					
		2)			r's F				rem				
		3)			- Ula		•						

Section 1.8 Review
Definition: A closed curve in
$$S' = circle is$$
 a continuous
 $"map $Y: S' \rightarrow S'$.
 D We send every pt in S' to a point in S' .
 $@$ "Continuous" = we send points infinitesimally close
together in S' to points infinitesimally close
together in S' .
 $@$ "We map S' into S' w/ out ripping or eutling it$



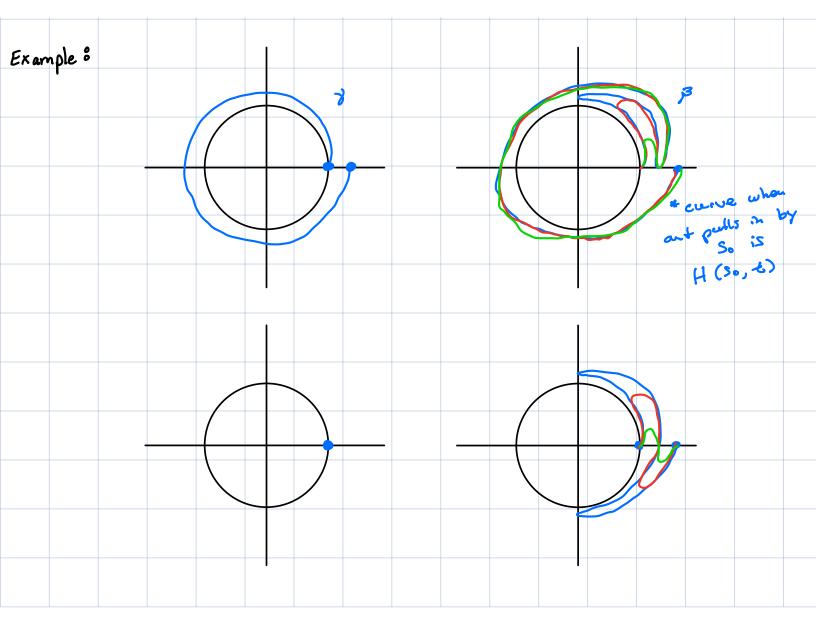


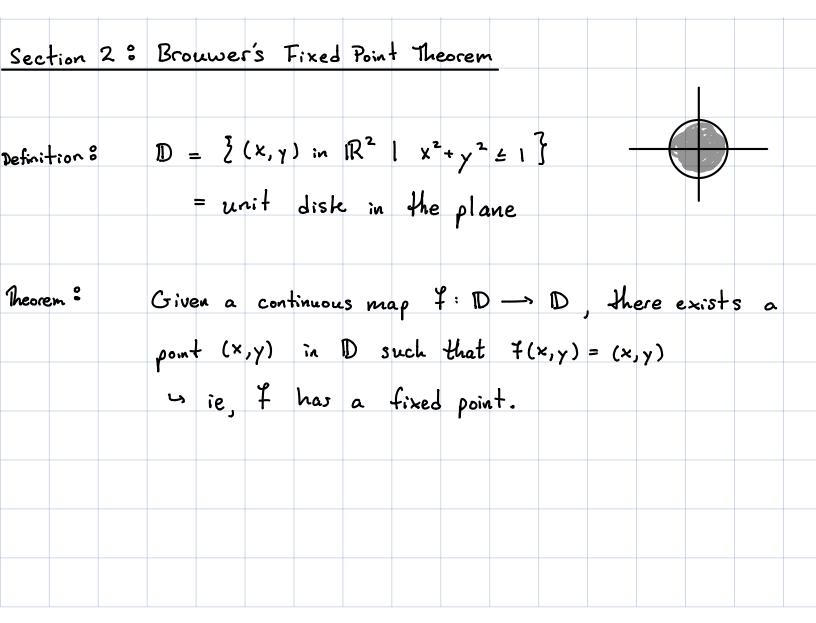
Lemma : (Curve Lifting) Given a closed curve
$$\forall : S' \rightarrow S'$$
,
there exists a function $f: [0, 2\pi] \rightarrow \mathbb{R}$ st
i) $f(0) = f(2\pi) + 2\pi \cdot n$ for some integer n
2) $\forall(t) = (\cos(f(t)), \sin(f(t)))$
 $\Rightarrow f$ is called a lift of \forall to \mathbb{R} .
Idea: $f(t) = Accumulated$ angle of rotation of $\forall(t)$
measured ψ respect to $(1,0)$
 \Rightarrow rotate clockwise angle decreases
 \Rightarrow rotate counter clockwise angle increases



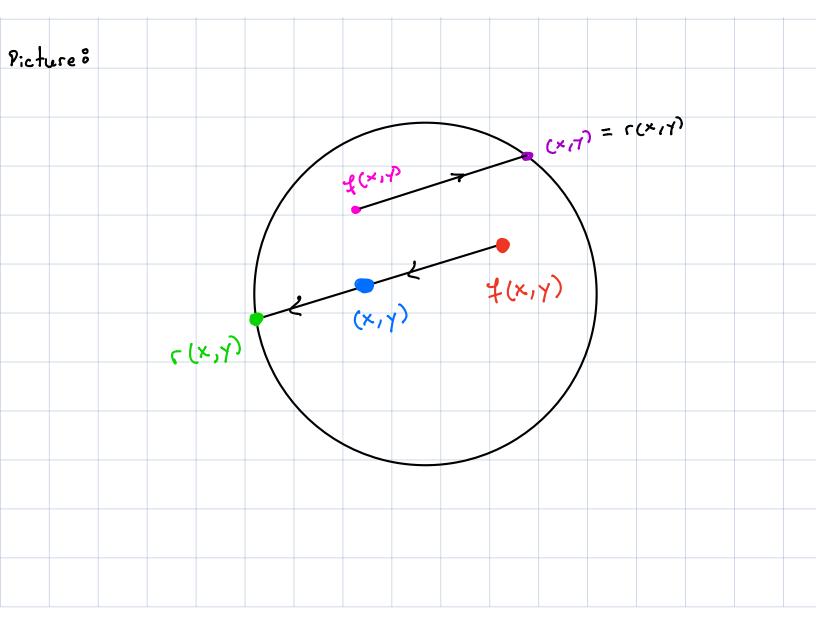
Definition: Two closed curves
$$\mathcal{B}: S' \rightarrow S'$$
 and $\mathcal{V}: S' \rightarrow S'$ are
homotopic if there is a continuous map $H: [0, 1] \times S' \rightarrow S'$
satisfying
1) $H(0,t) = \mathcal{B}(t)$
2) $H(1,t) = \mathcal{V}(t)$
Remark $\mathcal{V}: S' \rightarrow S'$
 $I = \mathcal{V}: S' \rightarrow S'$
 I

Rem	arK ⁸	i)	For	ead	ch s	So in	رم]] ,	H (s	o, t)	def	ines	a	losed	l
			Cur												
		2)					a f	Pamil	y of	curi	ves -	that	inter	polat	es
			beti												
			Int						zes h	ow 1.	ve c	an			
			push										S'	₽	
			He						•						
Theor	nem °	Two	o cle	osed	curv	ves j	ß :	s' –	→ S'	an d	४	: S'	>	s'	
			e ho												
					I			,	•	J		J			
								1	1	1					





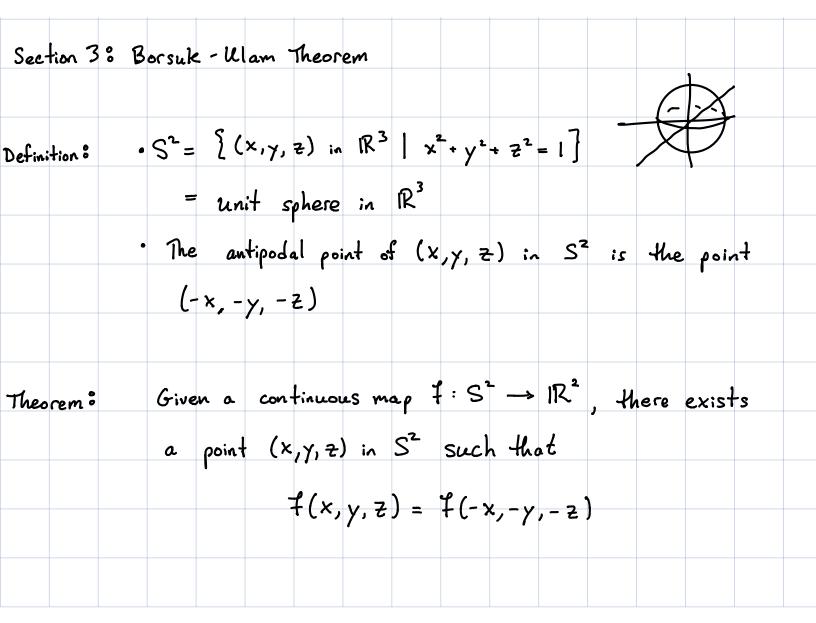
Proof 3 ') Suppose by way of contradiction that
$$f$$
 does not
have any fixed points.
2) Define a map $r: D \rightarrow S'$ as follows 3
a) Consider the ray from $f(x,y)$ to (x,y)
b) follow the ray until you hit the boundary
of the disk, which is a circle
•) Set $r(x,y) = point$ where ray meets the boundary
b) Note, that to get such a ray we needed
 $f(x,y) \neq (x,y)$
3) Note, r is continuous.
D $\rightarrow S'$



4) Define $\mathscr{V} : \mathscr{S}' \longrightarrow \mathscr{S}'$ as follows : Take S', include it into boundary of D, and then apply the map $r: \mathbb{D} \longrightarrow S'$. 5) Define B: S' -> S' as follows : Take S', map it to (0,0) in D, and then apply the map $r: \mathbb{D} \to S'$. 6) By construction, deg(8) = 1 7) B is a constant map, so deg(B) = 0

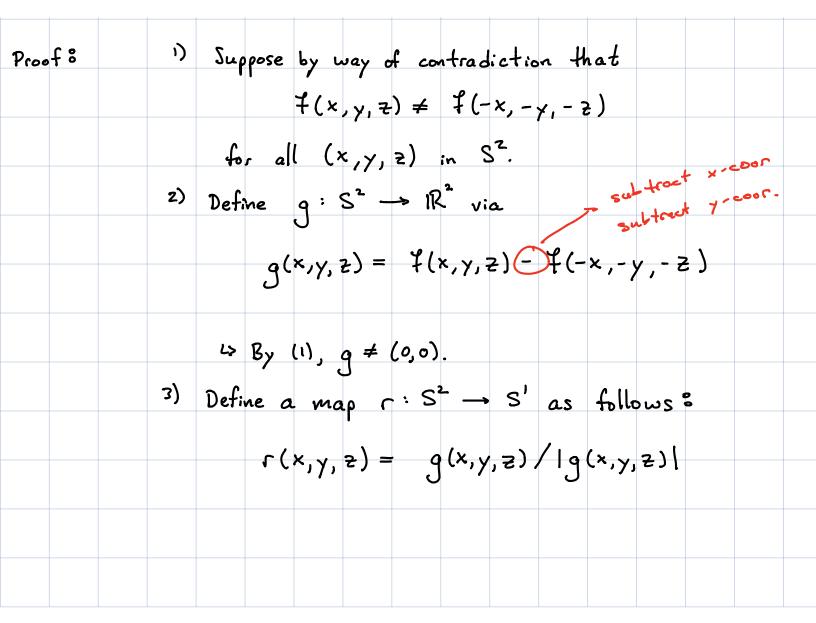
(42 cos(d), 42 sm(d))
8) Define a homotopy
$$H: [0, 1] \times S' \longrightarrow S'$$
 as follows:
 $H(s,t) = r(s \cdot cos(t), s \cdot sin(t))$
9) $H(0,t) = r(0,0) = \beta(t)$
10) $H(1,t) = (cos(t), sin(t)) = Y(t)$
11) => Y is homotopic to β
=> $1 = deg(8) = deg(\beta) = 0$
a contradiction
12) => $f(x,y) = (x,y)$ for at least some (x,y) in D.

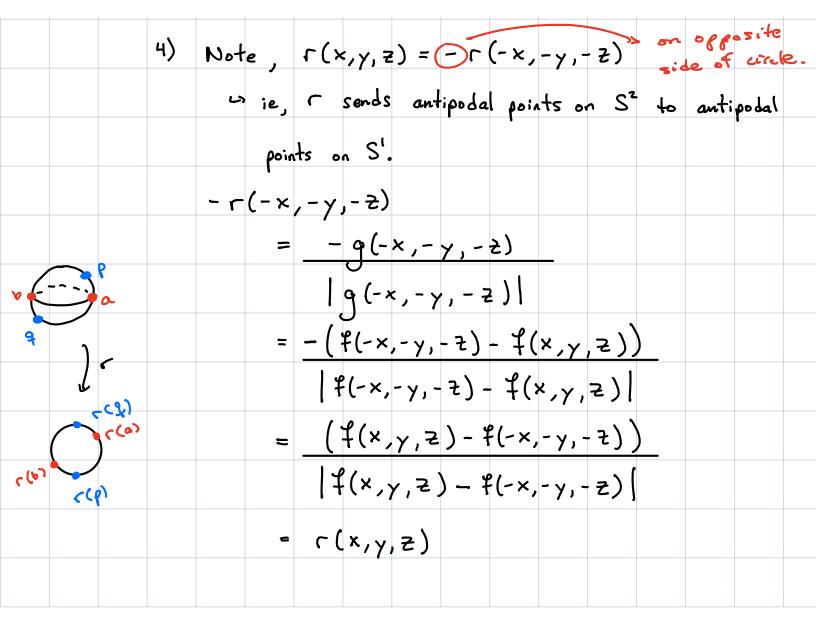
nuous function $f: [0,1] \rightarrow [0,1]$, there [0,1] such that $f(x) = x$.
the intermediate value theorem plicate the proof of Browwer's fixed point
in one lower dimension.
$f: S' \rightarrow \mathbb{R}$, there exists in S' such that
(x, y) = f(-x, -y)

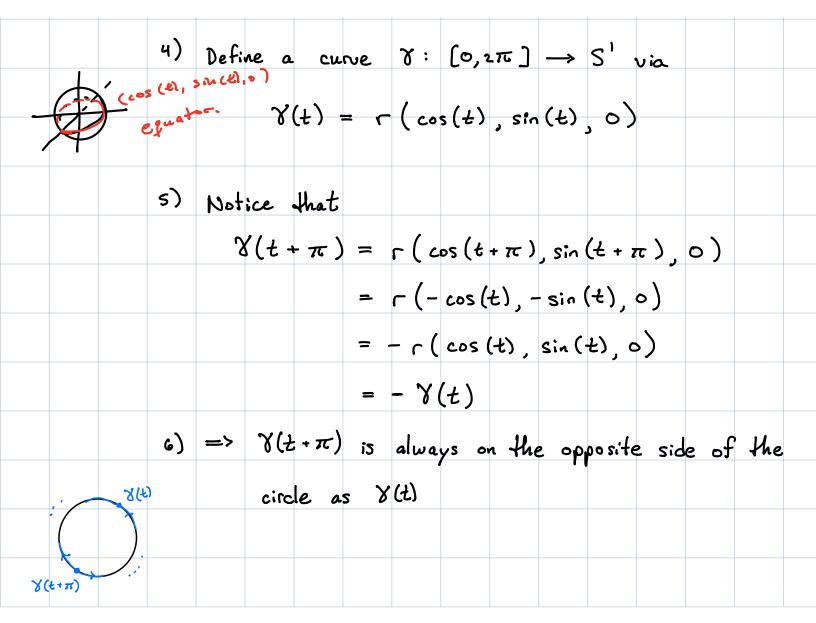


								1							
Exampl	e ³	;	S²	->	IR ²	Via	a	loca	.tion	an	eart	n is	ma	oped	
								ty).							
								exist.		tipo d	al lo	catic	n 5 0	~	
								ie te							
									J						
Definitio	*	The	no	C M	of	a pe	oint	(x,-	γ) :	. R	z i S				
								χ ¹ + ·							
		لا	> dis	tanc	e of	(×,	y)	from	the	oriq	in (0,0)	•		
										J					
							1	1						I	

	I							++-	
Remark °	I	f (x,	y) ≠ (<u>(</u> 0,0),	Then				
		(x,y)		<u> </u>		γ		
			(×,y)		((×,y)	, (×	/ ا(۲		
	;	es on	S ¹	< R ²					
					aled in	(x,y) a	Lccording	to its	
				J					
		႕၊	stance	from H	ne origin	so that	Lecording its new t lies on	distance	







7) Let f be a lift of X
8) Let
$$\mathcal{B}(t) := \mathcal{V}(t + \pi)$$
.
9) Note $f(t + \pi)$ is a lift of \mathcal{B} .
10) (6) => $f(t) - f(t + \pi) = \text{odd multiple of } \pi$, say $k \cdot \pi$
11) $f(0) = f(\pi) + k\pi = f(2\pi) + 2k\pi$
12) => deg(X) = $\frac{f(2\pi) - f(0)}{2\pi} = k \neq 0$
13) But X is homotopic to a constant curve
13) But X is homotopic to a constant curve
14) => $f(x, y, z) = f(-x, -y, -z)$ for some (x, y, z) IS