Le	ectu	re [#]	6											
Outl	ine°	り	Rei	view	from	last	tim	e						
						' to								
						ed c			R					
		4)		-		of a				њ S	1			
		5)				lasse								
		6)			•	varien								
				•					J					

Section 18 Review
Definition: A closed curve in a surface
$$\Sigma$$
 is a Continuous
 $O_{map} \quad \mathcal{Y} : \mathcal{S}' = circle \longrightarrow \Sigma$.
 O We send every pt in \mathcal{S}' to a point in Σ .
 O We send every pt in \mathcal{S}' to a point in Σ .
 O "Continuous" = we send points infinitesimally close
together in \mathcal{S}' to points infinitesimally close
together in Σ .
 O We map \mathcal{S}' into Σ w/ out ripping or cutting it

Theorem ⁸	Every	, compact	oriental	ole surface	is homeo	morphic to	م
					for some	-	
Up Next:	ı)	Brouwer's	Fixed Po	int Theorem			
•				em of Algeb			
				J			

Section 2: Maps of S' to S'
Definition:
$$S' = \{(x,y) \text{ in } R^2 \mid x^2 + y^2 = 1\}$$

 $= unit \text{ circle in the plane}$
Definition: A closed curve in S' = circle is a continuous
 $O'' map \quad \forall : S' \rightarrow S'.$
 $O' We send every pt in S' to a point in S'.$
 $O' We send every pt in S' to a point in S'.$
 $O' We send every pt in S' to a point in S'.$
 $O'' Continuous'' = we send points infinitesimally close
together in S' to points infinitesimally close
together in S'.
 $O'' We map S' into S' W out ripping or cutting it$$

Equi	valently	, a ma	ρ γ	S -	→ S'	may	be	View	ed
-									
			•	.π] -	<u> </u>	, 1			
w/									
			٦٢) = (γ (2π)			
4	' i.e., c	i map a	of a	circle	zi s	just a	map	of a	n
لہ									
					•				that
				Ų	'				
			J						
	as w/	as a cont w/ i.e., c interv L> Intuit wrapp	as a continuous ma w/ i.e., a map a interval that interval that interval that wrapping/laying	as a continuous map 8: [0, 2 W/ i.e., a map of a interval that conne interval that conne interval flat conne interval flat conne	as a continuous map &: [0, 2π] - w/ √(0) = ~ i.e., a map of a circle interval that connects u interval that connects u wrapping/laying a string	as a continuous map $\forall : [0, 2\pi] \longrightarrow S$ w/ $\forall (0) = \forall (2\pi)$ $\downarrow i.e., a$ map of a circle is interval that connects up at $\downarrow Intuitively, \forall : S' \longrightarrow S'$ give wrapping/laying a string onto	as a continuous map $\forall : [0, 2\pi] \longrightarrow S'$ w/ $\gamma(0) = \gamma(2\pi)$ \downarrow i.e., a map of a circle is just a interval that connects up at its end \downarrow Intuitively, $\gamma: S' \longrightarrow S'$ gives a w	as a continuous map $\vartheta: [0, 2\pi] \longrightarrow S'$ w/ $\gamma(o) = \gamma(2\pi)$ i.e., a map of a circle is just a map interval that connects up at its end point v Intuitively, $\gamma: S' \longrightarrow S'$ gives a way or w capping/laying a string onto a circle	 8: [0, 2π] → S' w/ Y(0) = Y(2π) i.e., a map of a circle is just a map of a interval that connects up at its end points. interval that connects up at its end points. intuitively, X: S' → S' gives a way of wrapping/laying a string onto a circle such

Example: 1)
$$Y_n$$
: $[0, 2\pi] \rightarrow S' \subseteq \mathbb{R}^2$ given by
 $Y_n(t) = (\cos(nt), \sin(nt))$
 \therefore What is Y_0 ?
 \therefore What is Y_0 ?
 \therefore What is Y_1 ?
 \therefore What is Y_1 ?
 \therefore What is Y_n ?
 \therefore $y_n(0) = Y_n(2\pi)$, is, ends glue together
 $Y_n(0) = (1,0) = (\cos(2\pi n), \sin(2\pi n)) = Y_n(2\pi)$.

2) Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be any function st
 $f(o) = f(2\pi) + 2\pi r \cdot n$
for some n an integer.
 $\Im f: [o, 2\pi] \to S'$ given by
 $\Im f: [o, 2\pi] \to S'$ given by
 $\Im f: [o, 2\pi] \to S'$ given by
 $\Im f(t) = (\cos(f(t)), \sin(f(t)))$
 $\hookrightarrow Note \Im f(0) = (\cos(f(0)), \sin(f(0)))$
 $= (\cos(f(2\pi) + 2\pi n), \sin(f(2\pi) + 2\pi n))$
 $= (\cos(f(2\pi)), \sin(f(2\pi)))$
 $= \Im f(2\pi)$
 $= \Im f 1s a closed curve.$

	_	a 1	C 1.		1											
Seet	ion 3	° L	ittin	g cl	osed	cur	ves	tol	<u>r</u>							
Lem	maŝ	(د	rve	Lifting	,) (riven	٥	clo	sed	CLFU	e V	' : S'	>	S',		
		₽h	ere	exis-	ts a	. fu	nctio	n	f : ([0,2	π]	>	I R	st		
										fo:						
										\$(t))	_		J			
				f is	Ca	illed	a	l;f+	of	ን ተ	אן מ	ξ.				
Rema	arK:		ı)	ł	need	not	be	unig	ue.							
										Υ,	then	7	+ 27	5 · K	is	0.
				1:6-	t of	8	fos	eve	ery	integ	er	k.				
			3)							er lit			Y .			

Proof:
1) Idea : "Unwind" the curve by noting the angle.
2) Notice that
$$\chi(t) = (\cos(f(t)), \sin(f(t)))$$

if and only if $f(t) = angle between $\chi(t)$ and $(1, 0)$
3) $f(t) = Accumulated angle of rotation of $\chi(t)$
measured w/ respect to $(1, 0)$
is rotate clockwise angle decreases
is rotate counter clockwise angle increases
is go around 5 times angle increases by
 $10\pi = 5 \cdot (2\pi r)$.
4) By construction and (2) , $\chi(t) = (\cos(f(t)), \sin(f(t)))$$$

5) The only part in defining F where we have any choice is picking $F(0)$, that is, the	
any choice is picking $F(o)$, that is, the	
starting angle from (1,0); any two choices	
differ by multiples of 27.	
So adding nultiples of 27t to 7 gives all 1:fts	
6) Notice that $\Im(o) = \Im(2\pi)$.	
So total accumulated angle must be a multiple st	2
275 plus the starting angle.	
So $f(0) = f(2\pi) + 2\pi n$ for some n.	
	`~
Example: (1) A lift of γ_n to \mathbb{R} is $f(t) = n \cdot t$.	
2) A lift of dy to R is f.	

+														+		
hema	ur K 🖁		ı)	Inti	<i>r</i> itive	ely,	deg	(४) :	= sia	ned	#。	f tin	nes	V com	plete	يار
							J I Ihe								ſ	6
											, =	10 80	tive	wrap		
					د د ا	yne s						-				
							W	raps	Coun	ter cl	ockw	ise –	bos	itive	wrap	
Exam	ple:		ı)	deg	(Xn)) = ($\mathbf{}$									
	•			See				nples	•							
								T								
																-
																L

Sec	tion	5:	Hor	notop	y cl	asse:	s of	CUTI	ves							
Defini	tion :	Two	s cl	osed	cur	ves	: گر	s' –	→ S'	and	ን:	s' -	→ s'	a.s.	2	
				pic il												s۲
			styin								l					
			• •) H(•	,,+)	= ß	(+)									
				H(1		-										
Remo	ırK 8		Equi	valen	Hy,	H :	[0,1] * [0,27	ד] _	→ S'	, لما	/			
			I		•	∍,t)										
				2)	H(ı, t)	= 2	(t)								
				3)	H(s,o)	=	H(s	2 TC)						

Remark ^s	i)	For eo	.ch So in	[0,1]	H(s, +)	defines	a closed
			in S'.				
	2)			a famil	y of curi	ves that	interpolates
			B and				
	3)	Intuiti			zes how w	e con	
			-		image o		S' 1 6
			ge of V		را	0	

Sec	tion	6.	Hon	rotopy	inv	arien	.ce	of	degre	e						
									U							
Theo	rem °		Tw	o cl	osed	curv	ves	ß :	s' -	→ S'	an d	Y	: S'	>	s'	
										if 1						
											J		J			
Remo	r.K :		ı)	Noti	ice f	hat i	rotat	ling H	he ima	zge o	a	curve	e in	۲ı	defin	e5
								-		curves						
										pic h						
			2)							θ,						
						+ 0										
									sf ra	otate	9 X	•				
					0											

Claim	1:	If	deg	(B)	= de	2g (V)	_, ↓	hen	ß	is h	omot	opic	to	γ.	
Lemma	0	Spse	7C	0) =	(1,0).	If	deg	(४)	= ^	, H	len	8	i S	
		hom	otopi	e to	Jr V	:	(.05	(nt), si	i lnt	n).				
Proof	•	ı)	Let												
		2)	L; Defin						∢(} →						
				ĥ	(s,ł)) =	(1-s)•7	(+) +	· S•	(n·t)			
		3)	Defir] —		•				

4) We claim that H is a homotopy from
$$\mathcal{X}$$
 + \mathcal{X}_{n} .
5) Check H glues up at ends
i) $\widetilde{H}(s, o) = (1-s) \cdot f(o) = O$
ii) $\widetilde{H}(s, 2\pi) = (1-s) \cdot f(2\pi n) + s \cdot 2\pi n$
 $= (1-s) \cdot 2\pi \operatorname{deg}(\mathcal{X}) + s \cdot 2\pi n$
 $= 2\pi n$
iii) $= \mathcal{H}(s, o) = (\cos(0), \sin(0))$
 $= (\cos(2\pi n), \sin(2\pi n))$
 $= H(s, 2\pi)$

6) Check H is a homotopy from X to Xn
7)
$$\tilde{H}(o,t) = f(t)$$

 $\Rightarrow H(o,t) = (cos(f(t)), sin(f(t))) - X(t)$
8) $\tilde{H}(1,t) = n \cdot t$
 $\Rightarrow H(1,t) = (cos(nt), sin(nt)) = Xn(t)$
 $F(t) = 1$
 $\Rightarrow H(1,t) = (cos(nt), sin(nt)) = Xn(t)$
 $F(t) = 1$
 $\Rightarrow H(1,t) = deg(X) = n = deg(B)$
 $\Rightarrow f(t) = 1$
 $\Rightarrow f(t) = 1$

Claim	12:	 τf	ß;	s ha	omo to	pic	to J	, J	nen	deg ((7) =	deg	(耳)		
										U		0			
Theor	rem °	(Horr	otopy	Lift:	ng)	Let	В	an	ıγ	l	e c	losed	cu	rves	
					-		•] × [0				
		w/	HC	0,t)) = <i>J</i> B	(t)	an d	н(ı	, , t)=	Y(f	.) _				
		The	se et	kists	a	conti	ruous	ma	ρ						
					Ĥ:	[o,	1]×[<u>ο</u> , 2π]	R					
		₽ha	at si	atisfi	es										
			1)	H(s,ł)	= (a	∽s(Ĥ	(3代)), si	•(Ĥ(s,t)))			
			2)	For	all	s,	Ĥ(s, 2	π) ·	- มิเ	s,o)	= 2 T	5n			
											multi		f 270	7.	
						•	•		5						

I)	Prove the th	eorem by "un	wrapping" in	families.
			• •	
2)				
3)	U U			multiple of 27t.
		- jump as s	varies => m	ust be constant.
		ð		
	2)	 H(s,t) = 1 This essent 2) Since H part we vary estimate can't jump 3) For any lift So H(s, zπ) each S. 	 H(S,t) = lift of the cu This essentially will impl 2) Since H parameterizes su we vary S, the accu can't jump (it is continu 3) For any lift, f(2π) - So H(S, 2π) - H(S, 0) is each S. 	So $\tilde{H}(s, 2\pi) - \tilde{H}(s, o)$ is a multiple

Proof:
1) Let H be homolopy from
$$f$$
 to X .
2) Let \tilde{H} be a lift of H
3) $\tilde{H}(0,t)$ is a lift of f
 $(\cos(\tilde{H}(0,t)), \sin(\tilde{H}(0,t))) = H(0,t) = f(t)$
4) $\tilde{H}(1,t)$ is a lift of X
5) So $\deg(f) = (\tilde{H}(0,2\pi) - \tilde{H}(0,0))/2\pi$
 $= (\tilde{H}(1,2\pi) - \tilde{H}(1,0))/2\pi$
 $= \deg(X)$.
 $\tilde{H}(1,0) = \frac{1}{2}$

 						 1		