Lecture \# 6

Outline: 1) Review from last time
2) Maps of S^{\prime} to S^{\prime}
3) Lifting closed curves to \mathbb{R}
4) The degree of a map of S^{\prime} to S^{\prime}
5) Homotopy classes of curves
6) Homotopy invarience of degree

Section 1: Review

Definition: - A closed curve in a surface \sum is a continuous $O_{\text {map }} \gamma: S^{\prime}=$ circle $\longrightarrow \Sigma$.
(1) We send every pt in S^{\prime} to a point in Σ.
(2) "Continuous" = we send points infintesimally close together in S^{\prime} to points infintesimally close together in Σ.
\hookrightarrow We map S^{\prime} into $\Sigma w /$ out ripping or cutting it

Example:
1)

2)

3)

Theorem: Every compact orientable surface is homeomorphic to a connect sum $T^{2} \# \ldots \# T^{2} \# S^{2}$ for some \# of T^{2} 's.
U_{p} Next:

1) Brouwer's Fixed Point Theorem
2) Fundamental Theorem of Algebra

Section 2: Maps of S^{\prime} to S^{\prime}

Definition: $S^{\prime}=\left\{(x, y)\right.$ in $\left.\mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$
$=$ unit circle in the plane

Definition: A closed curve in $S^{\prime}=$ circle is a continuous $\theta_{\text {map }} \gamma: S^{\prime} \longrightarrow S^{\prime}$.
(1) We send every $p t$ in S^{\prime} to a point in S^{\prime}.
(2) "Continuous" = we send points infintesimally close together in S^{\prime} to points infintesimally close together in S^{\prime}.
\leftrightarrow We map S^{\prime} into $S^{\prime} w /$ out ripping or cutting it

Remark: Equivalently, a map $\gamma: S^{\prime} \longrightarrow S^{\prime}$ may be viewed as a continuous map

$$
\gamma:[0,2 \pi] \longrightarrow S^{\prime}
$$

$w /$

$$
\gamma(0)=\gamma(2 \pi)
$$

4 i.e., a map of a circle is just a map of an interval that connects up at its end points.
\leftrightarrow Intuitively, $\gamma: S^{\prime} \rightarrow S^{\prime}$ gives a way of wrapping/laying a string onto a circle such that you can tie together its ends.

Example: 1) $\gamma_{n}:[0,2 \pi] \rightarrow S^{\prime} \subseteq \mathbb{R}^{2}$ given by

$$
\gamma_{n}(t)=(\cos (n t), \sin (n t))
$$

\& What is γ_{0} ?
\hookrightarrow What is γ_{-1} ?
\leftrightarrow What is γ_{n} ?
$\gamma_{n}(0)=\gamma_{n}(2 \pi)$, ie, ends glue together

$$
\gamma_{n}(0)=(1,0)=(\cos (2 \pi n), \sin (2 \pi n))=\gamma_{n}(2 \pi) .
$$

2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be any function st

$$
f(0)=f(2 \pi)+2 \pi \cdot n
$$

for some n an integer.
$\gamma_{f}:[0,2 \pi] \rightarrow S^{\prime}$ given by

$$
\gamma_{f}(t)=(\cos (f(t)), \sin (f(t)))
$$

\leadsto Note $\gamma_{f}(0)=(\cos (f(0)), \sin (f(0)))$

$$
\begin{aligned}
& =(\cos (f(2 \pi)+2 \pi n), \sin (f(2 \pi)+2 \pi n)) \\
& =(\cos (f(2 \pi)), \sin (f(2 \pi))) \\
& =\gamma_{f}(2 \pi)
\end{aligned}
$$

$\Rightarrow \gamma_{f}$ is a closed curve.
3) Csazier examples

Section 3: Lifting closed curves to \mathbb{R}

Lemma: (Curve Lifting) Given a closed curve $\gamma: S^{\prime} \rightarrow S^{\prime}$, there exists a function $f:[0,2 \pi] \rightarrow \mathbb{R}$ st

1) $f(0)=f(2 \pi)+2 \pi \cdot n$ for some integer n
2) $\gamma(t)=(\cos (f(t)), \sin (f(t)))$
$\rightarrow f$ is called a lift of γ to \mathbb{R}.

Remark: 1) f need not be unique.
2) If f is a lift of γ, then $f+2 \pi \cdot k$ is a lift of γ for every integer k.
3) These are the only other lifts of γ.

Proof:

1) Idea: "Unwind" the curve by noting the angle.
2) Notice that $\gamma(t)=(\cos (f(t)), \sin (f(t)))$ if and only if $f(t)=$ angle between $\gamma(t)$ and $(1,0)$
3) $f(t)=$ Accumulated angle of rotation of $\gamma(t)$ measured w/ respect to $(1,0)$
\rightarrow rotate clockwise angle decreases
\rightarrow rotate counter clockwise angle increases
\rightarrow go around 5 times angle increases by $10 \pi=5 .(2 \pi)$.
4) By construction and $(2), \gamma(t)=(\cos (f(t)), \sin (f(t)))$
5) The only part in defining f where we have any choice is picking $f(0)$, that is, the starting angle from $(1,0)$; any two choices differ by multiples of 2π.
So adding multiples of 2π to 7 gives all lifts
6) Notice that $\gamma(0)=\gamma(2 \pi)$.

So total accumulated angle must be a multiple of 2π plus the starting angle.
So $f(0)=f(2 \pi)+2 \pi \cdot n$ for some n.

Example:

1) A lift of γ_{n} to \mathbb{R} is $f(t)=n \cdot t$.
2) A lift of γ_{f} to \mathbb{R} is f.
3)

$$
\operatorname{deg}(\gamma)=(f(2 \pi)-f(0)) / 2 \pi=(-2 \pi-0) / 2 \pi=-1
$$

4)

$$
\operatorname{deg}(\gamma)=\left(\frac{5 \pi}{2}-\frac{\pi}{2}\right) / 2 \pi=1
$$

Section 4: The degree of a map of s^{\prime} to S^{\prime}

Definition: The degree of a closed curve $\gamma: S^{\prime} \rightarrow S^{\prime}$ is

$$
\operatorname{deg}(\gamma)=(f(2 \pi)-f(0)) / 2 \pi
$$

where f is any lift of γ to \mathbb{R}.

Remark: \quad 1) $\operatorname{deg}(\gamma)$ is independent of the choice of lift f. \leftrightarrow If g is another lift of γ, then

$$
f=g+2 \pi \cdot k
$$

So $\quad \frac{f(2 \pi)-f(0)}{2 \pi}=\frac{g(2 \pi)-g(0)}{2 \pi}$.

Remark:

1) Intuitively, $\operatorname{deg}(\gamma)=$ signed $\#$ of times γ completely wraps around the circle
\longrightarrow signed: wraps cloctewise = negative wrap wraps counter cloclewise $=$ positive wrap

Example:

1) $\operatorname{deg}\left(\gamma_{n}\right)=n$
2) See above examples.

Section 5: Homotopy classes of curves

Definition: Two closed curves $\beta: S^{\prime} \rightarrow S^{\prime}$ and $\gamma: S^{\prime} \rightarrow S^{\prime}$ are homotopic if there is a continuous map $H:[0,1] \times S^{\prime} \longrightarrow S^{\prime}$ satisfying

1) $H(0, t)=\beta(t)$
2) $H(1, t)=\gamma(t)$

Remark: Equivalently, $H:[0,1] \times[0,2 \pi] \rightarrow S^{\prime} w /$

1) $H(0, t)=\beta(t)$
2) $\quad H(1, t)=\gamma(t)$
3) $\quad H(s, 0)=H(s, 2 \pi)$

Remark: 1) For each s_{0} in $[0,1], H\left(s_{0}, t\right)$ defines a closed curve in S^{\prime}.
2) It parametrizes a family of curves that interpolates between β and γ.
3) Intuitively, H parametesizes how we can push, compress, deform the image of β in S^{\prime} to the image of γ in S^{\prime}.

Example:
Remark: \quad It we cam rotate two curves to same curve, then
they are homotopic.

Example:

Section 6: Homotopy invarience of degree

Theorem: Two closed curves $\beta: S^{\prime} \rightarrow s^{\prime}$ and $\gamma: s^{\prime} \rightarrow S^{\prime}$ are homotopic if and only if $\operatorname{deg}(\beta)=\operatorname{deg}(\gamma)$

Remark: 1) Notice that rotating the image of a curve in S^{\prime} defines a continuous family of curves and thus a homotopy
\Rightarrow Any curve is homotopic to a curve w/ $\gamma(0)=(1,0)$
2) If we rotate γ by θ, then the lift changes by $f+\theta$
$\Rightarrow \operatorname{deg}(\gamma)=\operatorname{deg}$ of rotated γ.

Claim 1: If $\operatorname{deg}(\beta)=\operatorname{deg}(\gamma)$, then β is homotopic to γ.
Lemma: Spse $\gamma(0)=(1,0)$. If $\operatorname{deg}(\gamma)=n$, then γ is homotopic to $\gamma_{n}=(\cos (n t), \sin (n t))$.

Proof: 1) Let f be a lift of γ w/ $f(0)=0$.
\rightarrow we can do this since $\gamma(0)=(1,0)$.
2) Define $\tilde{H}:[0,1] \times[0,2 \pi] \rightarrow \mathbb{R}$ by

$$
\tilde{H}(s, t)=(1-s) \cdot f(t)+s \cdot(n \cdot t)
$$

3) Define $H:[0,1] \times[0,2 \pi] \longrightarrow S^{\prime}$ by

$$
H(s, t)=(\cos (\tilde{H}(s, t)), \sin (\tilde{H}(s, t)))
$$

4) We claim that H is a homotopy from γ to γ_{n}.
5) Checte H glues up at ends
i) $\tilde{H}(s, 0)=(1-s) \cdot f(0)=0$
i)

$$
\begin{aligned}
\tilde{H}(s, 2 \pi) & =(1-s) \cdot f(2 \pi n)+s \cdot 2 \pi n \\
& =(1-s) \cdot 2 \pi \operatorname{deg}(\gamma)+s \cdot 2 \pi n \\
& =2 \pi n
\end{aligned}
$$

$$
\text { iii) } \begin{aligned}
\Rightarrow H(s, 0) & =(\cos (0), \sin (0)) \\
& =(\cos (2 \pi n), \sin (2 \pi n)) \\
& =H(s, 2 \pi)
\end{aligned}
$$

6) Check H is a homotopy from γ to γ_{n}
7) $\tilde{H}(0, t)=f(t)$

$$
\Rightarrow H(0, t)=(\cos (f(t)), \sin (f(t)))=\gamma(t)
$$

8)

$$
\begin{aligned}
& \tilde{H}(1, t)=n \cdot t \\
& \Rightarrow H(1, t)=(\cos (n t), \sin (n t))=\gamma_{n}(t)
\end{aligned}
$$

$$
* \underset{\sim}{*}=\text { homptopic }
$$

Proof:

1) Suse $\operatorname{deg}(\gamma)=n=\operatorname{deg}(\beta)$
2) $n=\operatorname{deg}(\gamma)=\operatorname{deg}($ rotated $\gamma-1$ starting pt $(1,0))$

By lemma and fact that rotation is a homotopy,

$$
\gamma \cong \text { rotated } \gamma \simeq \gamma_{n}
$$

3) Similarly, $\beta \simeq$ rotated $\beta \simeq \gamma_{n}$
4) Chain together these homotopies to get $\beta \simeq \gamma$.

Claim 2: If β is homotopic to γ, then $\operatorname{deg}(\gamma)=\operatorname{deg}(\beta)$

Theorem: (Homotopy Lifting) Let β and γ be closed curves in S^{\prime}. Given a homotopy $H:[0,1] \times[0,2 \pi] \rightarrow S^{\prime}$ w) $H(0, t)=\beta(t)$ and $H(1, t)=\gamma(t)$.

There exists a continuous map

$$
\tilde{H}:[0,1] \times[0,2 \pi] \rightarrow \mathbb{R}
$$

that satisfies

1) $\quad H(s, t)=(\cos (\tilde{H}(s, t)), \sin (\tilde{H}(s, t)))$
2) For all $s, \tilde{H}(s, 2 \pi)-\tilde{H}(s, 0)=2 \pi n$
3) \tilde{H} is unique up to adding a multiple of 2π.

Remark:

1) Prove the theorem by "unwrapping" in families.
$\bar{H}(s, t)=$ lift of the curve $H(s, t)$ w/ s fixed.
\rightarrow This essentially will imply (1), (3) in theorem
2) Since H parameterizes some family of curves, as we vary s, the accumulated amount of rotation can't jump (it is continuous).
3) For any lift, $f(2 \pi)-f(0)$ is a multiple of 2π.

So $\bar{H}(s, 2 \pi)-\tilde{H}(s, 0)$ is a multiple of 2π for each S.

But it can't jump as s varies \Rightarrow must be constant.

Proof: 1) Let H be homotopy from β to γ.
2) Let \bar{H} be a liff of H
3) $\tilde{H}(0, t)$ is a lift of β

$$
\rightarrow(\cos (\tilde{H}(0, t)), \sin (\tilde{H}(0, t)))=H(0, t)=\beta(t)
$$

4) $\tilde{H}(1, t)$ is a lift of γ
5) So

$$
\begin{aligned}
\operatorname{deg}(\beta) & =(\tilde{H}(0,2 \pi)-\tilde{H}(0,0)) / 2 \pi \\
& =(\tilde{H}(1,2 \pi)-\tilde{H}(1,0)) / 2 \pi \\
& =\operatorname{deg}(\gamma)
\end{aligned}
$$

