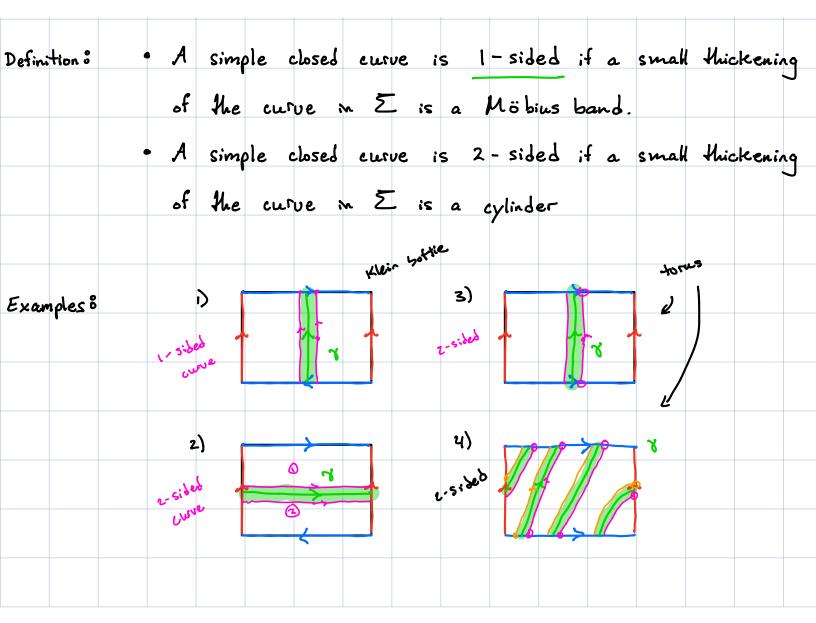
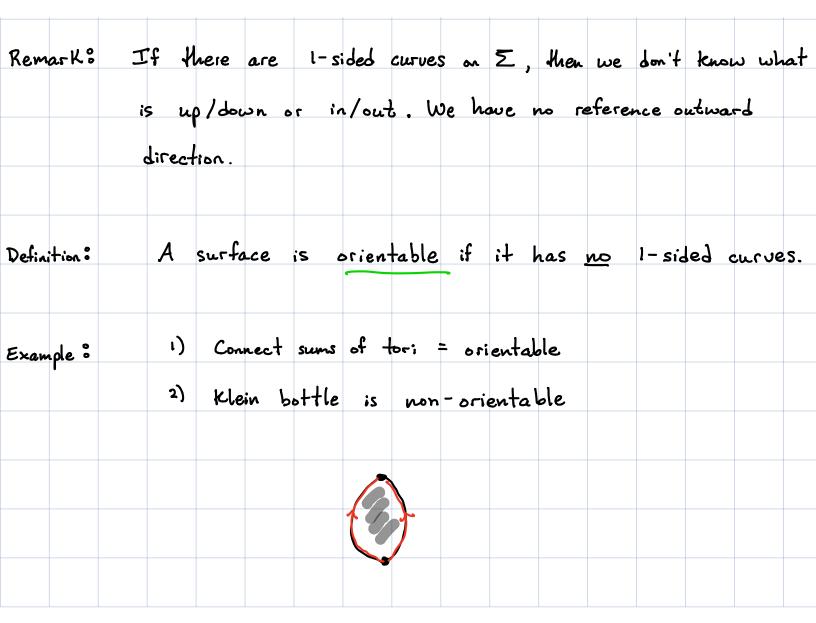
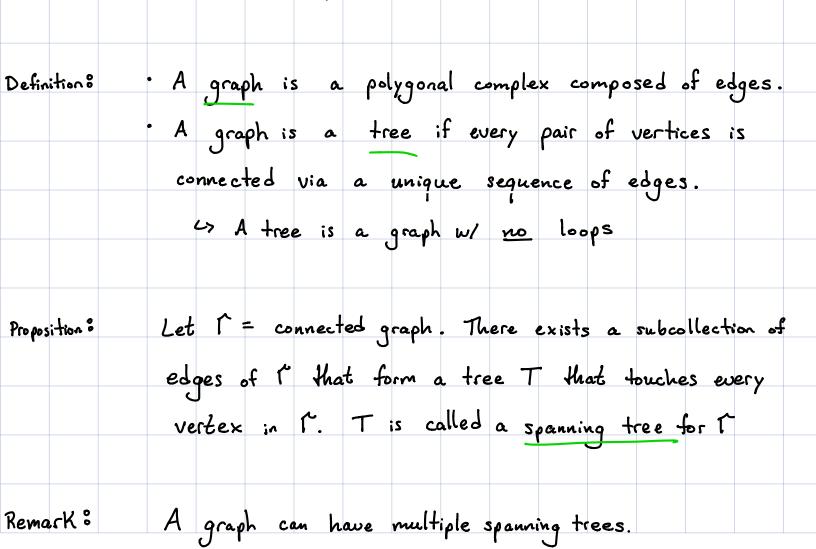

2.	ectu	re#	5											
Out	line ²	ı)	Revi	ew f	rom	last	time							
		2)	Cu	rves	in Sc	er fac	es a	nd C)rien [.]	tabili	Ήy			
		3)	Prel	imina	ties a	m G	raphs							
		4)	2 -	. dim	ensio	n Poi	ncare	Co	rjech	ure				
		5)			catio									

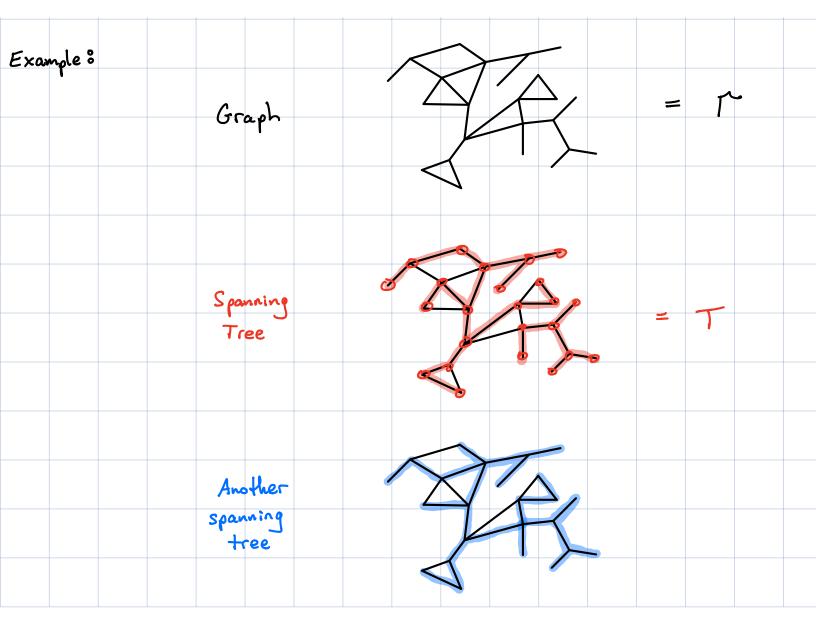

Section 1 ° Review Definition: Given two surfaces X and Y, the connect sum of X and Y, denoted X. #Y, is obtained via 1) Remove an open disk from both X and Y to create two surfaces w/ "boundaries" 2) Glue the resulting boundaries together to create the new surface X # Y.



nple °	(ب	Τ2	#T	·r =	.9	enus	2	sucta	ce					
	2)	S²	# 9	5 ² =	<u>ح</u>	2								
	3)	S²	# T	_2 =	- T	-2								
	4)	Т	² #	≠	t – ²	7	g- t	imes	= ,	genu	، s م	surt	-ace	•
											U			
sition®	X	(χ#	Y)	= X	2(X)) +)	(Y)	- 7	2.					
	<u>ل</u> م	۲ -	T ²		X (*	T ²)	= C	2						
		X (x)	= X	(火,	# T ²)) + 2	2						
	nple :	2) 3) 4) sition ⁸ X	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2) $S^{2} \# S$ 3) $S^{2} \# T$ 4) $T^{2} \#$ sition ⁸ $\chi (\chi \# \gamma)$ $\Sigma_{5} \gamma = T^{2}$ $\chi (\chi \# \gamma)$	2) $S^{2} \# S^{2} =$ 3) $S^{2} \# T^{2} =$ 4) $T^{2} \# \#$ sition ⁸ $\chi(\chi \# Y) = \chi$ $\chi(\chi \# T^{2})$	2) $S^{2} \# S^{2} = S$ 3) $S^{2} \# T^{2} = T$ 4) $T^{2} \# \# T^{2}$ sition ⁸ $\chi(\chi \# Y) = \chi(\chi)$ $(\chi \chi \# T^{2}) = \chi(\chi)$	2) $S^{2} \# S^{2} = S^{2}$ 3) $S^{2} \# T^{2} = T^{2}$ 4) $T^{2} \# \# T^{2}$ sition ⁸ $\chi(\chi \# Y) = \chi(\chi) + \chi$ $\zeta_{3} Y = T^{2}, \chi(T^{2})$ $\chi(\chi \# T^{2}) = \chi(\chi)$	2) $S^{2} \# S^{2} = S^{2}$ 3) $S^{2} \# T^{2} = T^{2}$ 4) $T^{2} \# \dots \# T^{2}$ $\int g - t$ sition ² $\chi(\chi \# Y) = \chi(\chi) + \chi(Y)$ $\Box Y = T^{2}$ $\chi(T^{2}) = C$ $\chi(\chi \# T^{2}) = \chi(\chi) - 2$	2) $S^{2} \# S^{2} = S^{2}$ 3) $S^{2} \# T^{2} = T^{2}$ 4) $T^{2} \# \# T^{2} \int g - times$	2) $S^{2} \# S^{2} = S^{2}$ 3) $S^{2} \# T^{2} = T^{2}$ 4) $T^{2} \# \dots \# T^{2}$ $\int g - times = G$ sition ² $\chi(\chi \# Y) = \chi(\chi) + \chi(Y) - 2$ $L_{3} Y = T^{2}, \chi(T^{2}) = O$ $\chi(\chi \# T^{2}) = \chi(\chi) - 2$	2) $S^{2} \# S^{2} = S^{2}$ 3) $S^{2} \# T^{2} = T^{2}$ 4) $T^{2} \# \dots \# T^{2}$ $\int g - times = genus$ sition ² $\chi(\chi \# Y) = \chi(\chi) + \chi(Y) - 2$ $L_{2} Y = T^{2}, \chi(T^{2}) = 0$ $\chi(\chi \# T^{2}) = \chi(\chi) - 2$	2) $S^{2} \# S^{2} = S^{2}$ 3) $S^{2} \# T^{2} = T^{2}$ 4) $T^{2} \# \# T^{2}$ $\int g - times = genus g$ sition ⁸ $\chi(\chi \# Y) = \chi(\chi) + \chi(Y) - 2$ $L_{3} Y = T^{2}$, $\chi(T^{2}) = 0$ $\chi(\chi \# T^{2}) = \chi(\chi) - 2$	2) $S^{2} \# S^{2} = S^{2}$ 3) $S^{2} \# T^{2} = T^{2}$ 4) $T^{2} \# \dots \# T^{2}$ $\int g - times = genus g$ surf sition ³ $\chi(\chi \# Y) = \chi(\chi) + \chi(Y) - 2$ $\sum Y = T^{2}, \chi(T^{2}) = 0$ $\chi(\chi \# T^{2}) = \chi(\chi) - 2$	2) $S^{2} \# S^{2} = S^{2}$ 3) $S^{2} \# T^{2} = T^{2}$ 4) $T^{2} \# \dots \# T^{2}$ $\int g - times = genus g$ surface. sition ⁸ $\chi(\chi \# Y) = \chi(\chi) + \chi(Y) - \chi$ $L_{3} Y = T^{2}, \chi(T^{2}) = O$ $\chi(\chi \# T^{2}) = \chi(\chi) - \chi$

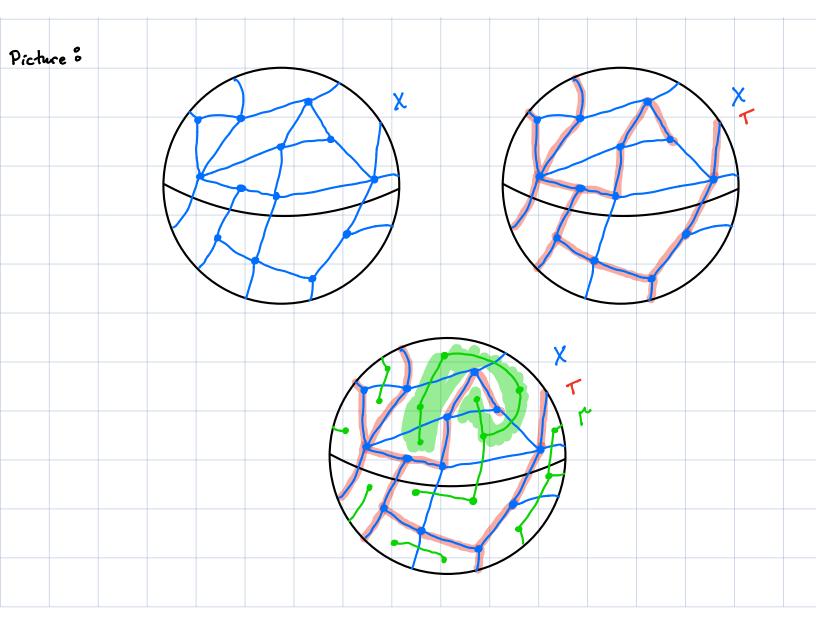
Curves in Surfaces and Orientability Section 2: • A closed curve in a surface Σ is a continuous Definition 3 $\text{map} \ \forall : S' = \text{circle} \longrightarrow \Sigma.$ D We send every pt in S' to a point in ∑. (2) "Continuous" = we send points infinitesimally close together in S' to points infintesimally close together in E whe map S' into Z w/ out sipping or cutting it • A curve is simple if the image of the curve in E does not cross/meet itself and the circle can be "pushed"/deformed to look like a seq. of edges





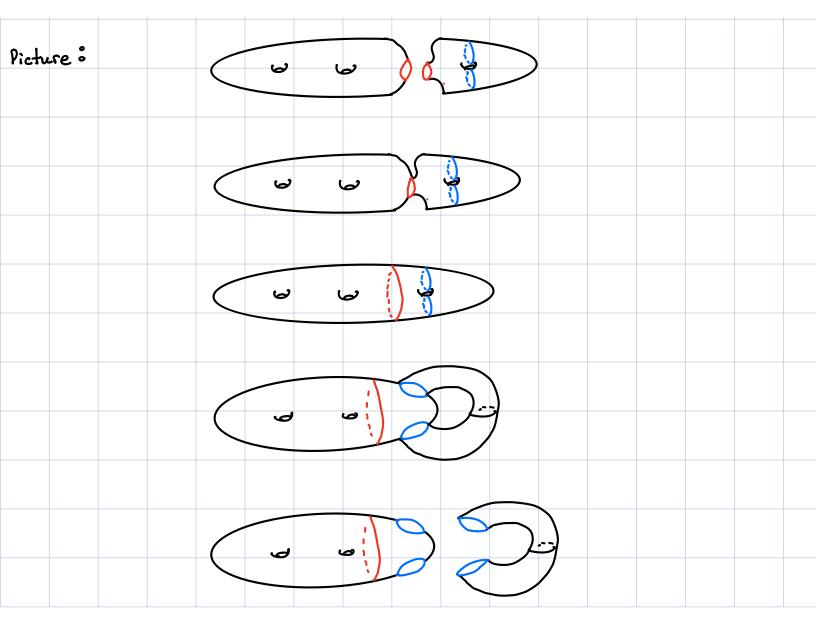
Definition ⁸ A surface is <u>compact</u> if it admits a polygonal complex structure w/ a finite # of vertices, edge: and faces. Theorem ⁸ Every compact orientable surface is homeomorphic to a connect sum T ² ##T ² #S ² for some # of T ² 's.
complex structure w/a finite # of vertices, edges and faces. Theorem 8 Every compact orientable surface is homeomorphic to a
Theorem 8 Every compact orientable surface is homeomorphic to a
$\begin{array}{c} \text{connect} \text{sum} T^{2} \# \dots \# T^{2} \# S^{2} \text{for some} \# \text{ of } T^{2} \text{'s.} \\ \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Section 3 ° Preliminaries on Graphs


Proof 8 1) Buildup (f one edge at a time.
1) Buildup (f one edge at a time.
1)
$$\frac{Add}{f_0}$$
 $\frac{Add}{edge}$ f_1 $\frac{Add}{edge}$ f_2 $\frac{Add}{edge}$ $f_n = f$
2) We sequentially build spanning trees T_i for T_i .
3) $f_0 = edge$, $T_0 = T_0$
4) $f_0 \rightarrow f_1 \circ either$
4) $f_0 \rightarrow f_1 \circ either$
5) No new vertex is $dded$ to fo to create f_1
1) $f_0 = edge$ new step
5) $If a) = Set$ $T_1 = T_0$ unew edge
1) $f_0 = Set$ $T_1 = T_0$

							1	1	1		1	1		
	6)	ľ,	\rightarrow	د. ا _{i+۱} °	ei	ther								
		a)	A	neu	o ve	rtex	is	adde	ed 4	, آ	to	creat	re t	i . 1
		b)	N۵	new	ver	tex	is	•-	•		~		•	•
	7)	тf	a) =	> S	et	T, =	Т,	U n	eu .	edge			
							T _{ir1} =				0			
	8)	By	Cons	struct	ີ່ທຸ	each	Ti	ís d	a tr	ee a	md .	touch	es	
												otain .		
			sult.											
											1			

Lemma:
Let
$$\Gamma = \text{connected graph}$$
. We have
 $V(\Gamma) - E(\Gamma) = X(\Gamma) \leq [$
 $W' = \text{equality iff } \Gamma \text{ is a tree.}$
Proof:
1) If $\Gamma = \text{tree}$, then we claim that $X(\Gamma) = 1$
i) Build up Γ sequentially: $\Gamma_1, \Gamma_2, \Gamma_3, ..., \Gamma_n = \Gamma$.
ii) Since Γ is a tree each time we add an
edge, we also add another vertex
 $G' = \frac{G'}{2}$, we would comm. two vertices via
at least 2 different seqs of edges
iii) So $\Gamma_1 = \text{edge} = X(\Gamma_1) = 2 - 1 = 1$
 $\Gamma_2 = V(\Gamma_1) - E(\Gamma_1) + 1 - 1 = 1$


iv) Repeatedly,
$$\chi(T;n) = V(T;) - E(T;) + l - l = l$$

v) => $\chi(T = tree) = 1$
2) Spec Γ is not necessarily a tree.
Let $T = spanning$ tree for T .
 $\chi(T) = V(T) - E(T)$
 $= V(T) - E(T) - E(not in T)$
 $= \chi(T) - E(not in T)$
 $\leq l$
3) Note, if $E(not in T) = 0$, then $\Gamma = T$.
 $\Rightarrow \chi(T) = l$ if and only if $\Gamma = tree$.

Theorem ?	Let $\Sigma = compact surface$. Then $\mathcal{X}(\Sigma) \leq 2$ and
	$\mathcal{X}(\Sigma) = 2$ if and only if Σ is homeomorphic to S^2 .
	is nomeomorphic to S.
0 0 0	
Proof	1) Fix a polygonal cpx X that gives Z.
	2) Let T = spanning tree for the graph that is made
	up of the edges of X.
	3) Define a graph (that can be drawn on X) via s
	a) place a vertex in the center of each face of
	X.
	b) Connect two vertices via an edge for each
	edge in X that is not in T that their
	faces share

4) $\chi(\Sigma) = \chi(\chi)$ = V(X) - E(X) + F(X) $= V(T) - E(T) - E(\Gamma) + V(\Gamma)$ frev. Lemma to of graphs. $= \chi(\tau) + \chi(\Gamma)$ 4 2 " This gives the first claim 5) Spse $\chi(\Sigma) = 2$, then $\chi(\Gamma) = l$ 6) => 1° is a tree 7) Thicken T and I into weird looking disks, which are trees, until they fill out I. 8) => E is gluing of two disks along their boundaries 9) => Σ is homeomorphic to S^2 .

								-					
Lemma ⁸	If	a	Surt	face	E	has	۵	2-51	ided	cur	ve	that	does
								ieces					
												e Σ'	•
			r										
Proofs	(ب	Let	ጽ	= 2	- sid	ed c	ILCUP	in	E.				
								in					
								s be			1 .		
								disks					
									-			cylind	ser.
	4)	So	ге и	oving	γ	from	Σ	and	ca	pping	off	the	
		bou	ndar	iesu	ง/ เ	disks	Unc	boes a	a co	nnec	t s	um.	
													~/T2.

Proof:
1) Let
$$X = poly. cpx$$
 for Σ
2) Let T and t be defined as before.
3) If $t = tree$, then as argued before $\Sigma = S^2$.
4) So we assume t is not a tree.
 \Rightarrow t has a loop $Y = 2$ -sided curve
5) We claim that Y does not separate Σ .
 \Rightarrow If not, $Z - Y = \Sigma \circ \cup \Sigma$, two separate
pieces
 \Rightarrow If we remove the faces and edges that Y
touches in X, then this divides X into
poly. cpxes Xo and X, for $\Sigma \circ and \Sigma$.

Next	ine ô	•	??	??:	2						