Lecture \# 4

Outline: 1) Review from last time
2) Colorings of Maps Theorem
3) The connect sums of surfaces

Section 1: Review

Definition: A surface is space that locally looks liter \mathbb{R}^{2} \rightarrow ie, zoom in close it just looks liter a "piece of paper."

Definition: A polygonal complex is a space obtained by gluing together polygons, edges, and vertices, where by glue we mean that we identify edges $w /$ edges and vertices w/ vertices (could glue polygon to self)

Definition: Let $X=$ polygonal complex w/

- $V(x)=\#$ of vertices
- $E(X)=\#$ of edges
- $F(x)=\#$ of faces

The Euler characteristic of X is

$$
X(x)=V(x)-E(x)+F(x)
$$

Examples: 1) Random Polygonal Complex

$$
x(10)=16-19+2=-1
$$

2) Torus 1

$$
x(\text { rr es })=1-2+1=0
$$

3) Sphere

$$
x(2)=2-1+1=2
$$

Proposition: Let X and Y be polygonal complexes that are homeomorphic to the same surface. Then their Euler characteristics agree.

$$
X(X)=X(Y)
$$

Definition: The Euler charactesistic of a surface Σ is the Euler characteristic of any polyogonal $c p x$ that is homeomsorphic to Σ.

Remark: To compute $\chi(\Sigma)$, break Σ up into regions and count the $\#$ of vertices, edges, and faces.

Examples:

1) $x\left(s^{2}\right)=2$
2) $x\left(T^{2}\right)=0$
3) x (klein bottle) $=0$
4) x (genus 2 surface $)=-2$

Section 2: Colorings of Maps

Question: - What is the minimum number of colors needed to color any map of the globe so that no two adjacent regions are colored the same color?

- What is the minimum number of colors needed to color any map of a surface so that no two adjacent regions are colored the same color?

Definition: A surface is compact if it admits a polygonal complex structure w/ a finite \# of vertices, edges, and faces.

4 Secretly, we needed to assume that our surfaces were compact when we defined their Euler characteristics.

Definition: A geographic complex associated to a compact surface \sum is a polygonal complex that is homeomorphic to \sum and satisfies:

1) Every face does not meet itself
2) Any two faces that meet share a unique edge
3) At least three faces meet at each vertex.

Remark: Intuitively, a geographic cox is a map of the surface that satisfies

1) A region cannot boarder itself
2) Two regions can only share one unique boarder
3) Vertices are where 3 or more regions meet

Example:

Example
geo. px

Non-exam.
geo cp.

Definition: - A legal coloring of a geo. cpu. is an assignment of a color to each face st no two adjacent faces have the same color.

- The coloring number of a geo cpx X

$$
N(X)=\begin{aligned}
& \text { minimum } \# \text { of colors needed to } \\
& \text { produce a legal coloring of } X .
\end{aligned}
$$

- The coloring number of a compact surface Σ is $N(\Sigma)=\begin{aligned} & \text { minimum } \# \text { of colors needed to } \\ & \text { produce a legal coloring of all geo. }\end{aligned}$ cox associated to Σ.

Theorem:

$$
N(\Sigma) \leqslant \frac{7+\sqrt{49-24 \cdot x(\Sigma)}}{2}
$$

Corollary: Any geo. capt on Σ can be legally colored using

$$
\frac{7+\sqrt{49-24 \cdot x(\Sigma)}}{2}
$$

colors.

Example:

1) $\Sigma=S^{2} \Rightarrow$ need at most 4 colors
2) $\Sigma=T^{2} \Rightarrow$
3) $\Sigma=$ genus 4 surface \Rightarrow need at most 10 colors

$$
\theta \alpha \omega 0
$$

Remark: To prove the theorem for $\Sigma=S^{2}$ is extremely difficult. We will prove it for $\chi(\Sigma) \leq 1$.

Notation: Let X be the geo. cpx associated to Σ that satisfies:

1) $N(x)=N(\Sigma)$
2) If Y is another geo. px associated to Σ w/ $N(Y)=N(x)$, then $F(X) \leq F(Y)$.

Lemma 0: Every face of X has at least $N(X)-1$ edges.

Proof:

1) We suppose by way of contradiction that there exists a face in X strictly less than $N(X)-1$ edges.
2) Denote this face by f.
3) Shrink f and all of its edges down to a single vertex. This produces a new geo. cp X^{\prime}.

4) Since this proceedure does not produce any new edges any coloring of X gives rise to a coloring of X^{\prime}

5) So $N\left(x^{\prime}\right) \leq N(x)$
6) If $N\left(X^{\prime}\right)=N(X)$, then by assumption on X, $F(X) \leq F\left(X^{\prime}\right)=F(X)-1$
\Rightarrow we actually must have $N\left(X^{\prime}\right)<N(X)$
7) So we may color X^{\prime} w/ $N(X)-1$ colors. But this allows us to color X w/ $N(X)-1$ colors. Namely, we color X^{\prime}, then since f has less than $N(X)-1$ edges, it has at most $N(X)-2$ adjacent faces. So we con always pick on of the $N(x)-1$ colors to color f differently than all its adjacent faces. $\Rightarrow N(X) \leq N(x)-1$, a contradiction.
8) \Rightarrow Every face of X has at least $N(X)-1$ edges.

Lemma 1: $\quad(N(X)-1) \cdot F(X) \leq 2 \cdot E(X)$

Proof: 1) Every edge touches two unique faces.
\Rightarrow Average \# of edges per face is $2 E(X) / F(X)$
2) By Lemma 0, each face has at least $N(X)-1$
edges
\Rightarrow Average \# of edges per face $\geqslant N(x)-1$
3) Combining these inequalities,

$$
N(x)-1 \leq 2 E(x) / F(x)
$$

Lemma 2: $\quad 3 V(X) \leq 2 E(X)$

Proof: 1) Let $\tilde{X}=$ preglued collection of polygons that we glue together to produce X.
2) Note, $2 E(X)=E(\tilde{X})$
3) Since at least 3 faces meet at each vertex,

$$
3 v(x) \leq v(\tilde{x})
$$

4) Since \tilde{X} is disjoint collection of polygons,

$$
E(\tilde{x})=V(\tilde{x})
$$

5) Combining,

$$
2 E(x)=E(\tilde{x})=v(\tilde{x}) \geqslant 3 v(x)
$$

Lemma 3: $\quad N(\Sigma) \leq 7-6 \cdot \chi(\Sigma) / F(X)$

$$
6 x(x)=6 V-6 E+6 F
$$

Proof:

$$
\begin{aligned}
N(\Sigma) & =N(X) \\
& \leq 1+2 E(X) / F(X) \\
& \leq 1+(6 E(x)-6 V(x)) / F(x) \\
& =1+(-6 X(X)+6 F(x)) / F(x) \\
& =7-6 \cdot x(x) / F(x) \\
& =7-6 \cdot x(\Sigma) / F(x)
\end{aligned}
$$

Proof: $\quad(x(\Sigma)=1)$:

$$
\begin{aligned}
N(\Sigma) & \leq 7-6 / F(x) \\
& \leq 6 \\
& =\frac{7+\sqrt{49-24 \cdot 1}}{2} \\
& =\frac{7+\sqrt{49-24 \cdot x(\Sigma)}}{2}
\end{aligned}
$$

Proof: $\quad(x(\Sigma) \leq 0)$

1) $\quad N(\Sigma)=N(x) \leq F(x)$
2)

$$
\begin{aligned}
N(\Sigma) & \leq 7-6 \cdot x(\Sigma) / F(x) \quad\{x(\Sigma) \leq 0 . \\
& \leq 7-6 \cdot x(\Sigma) / N(\Sigma)
\end{aligned}
$$

3) $\Rightarrow N(\Sigma)^{2}-7 N(\Sigma)+6 \cdot \chi(\Sigma) \leqslant 0$
4) This polynomial in $N(\Sigma)$ is upwards opening $w /$ at least one point on $N(\Sigma)$-axis.
5) \Rightarrow Largest $N(\Sigma)$ for which this holds is largest zero of poly.
6) $\Rightarrow N(\Sigma) \leq \frac{7+\sqrt{49-24 \cdot x(\Sigma)}}{2}$

Section: The connect sum of surfaces

Definition: Given two surfaces X and Y, the connect sum of X and Y, denoted $X \nexists Y$, is obtained via

1) Remove an open diste from both X and Y to create two surfaces w/ "boundaries"
2) Glue the resulting boundaries together to create the new surface $X \# Y$.

Example:

1) $T^{2} \# T^{2}=$ genus 2 surface
2) $S^{2} \# S^{2}=S^{2}$
3) $S^{2} \# T^{2}=T^{2}$
4) $\left.T^{2} \# \ldots \# T^{2}\right\} g$-times $=$ genus g surface.

Proposition: $\quad \chi(X * Y)=\chi(X)+\chi(Y)-2$

Proof:

1) Recall, we can compute the Euler characteristic of a surface by using any polygonal cpx associated to it.
2) Pick poly coxes for X and Y that both have at least one face that is a 2 -polygon w/ unique edges and vertices.
3) Removing said 2 -polygons gives removal of disks from X and Y.
4) To glue, we glue together the boundaries of these removed 2 -polygons.
5) This gluing gives poly cpa for $X \nexists Y$ w/

- Vertices $=V(X)+V(Y)-2$
- Edges $=E(X)+E(Y)-2$
- Faces $=F(X)+F(Y)-2$

6)

$$
\begin{aligned}
\chi\left(\Sigma \# \Sigma^{\prime}\right)= & V(X)+V(Y)-2 \\
& -(E(X)+E(Y)-2) \\
& +F(X)+F(Y)-2 \\
= & X(X)+X(Y)-2
\end{aligned}
$$

Example:

1) X (genus 3 surface)

$$
\begin{aligned}
& =\chi\left(T^{2} \# T^{2} \# T^{2}\right) \\
& =\chi\left(T^{2} \# T^{2}\right)+\chi\left(T^{2}\right)-2 \\
& =\chi\left(T^{2}\right)+\chi\left(T^{2}\right)-2+\chi\left(T^{2}\right)-2 \\
& =-4
\end{aligned}
$$

2) x (genus g surface $)=2-2 g$

Nexttime: 1) Orientability
2) Classification of Surfaces Theorem.

