2 6	ectu	re#	4										
Out	line:	Ŋ	Revi	ew f	rom	last	time						
		2)	Colo	rings	of M	aps	Theore	le.					
		3)	The	Con	nect	Sum s	°ŧ	surfa	ces				

Section 1 8 Review A surface is space that locally looks like IR2 Definition 8 ie, zoom in close it just looks like a "piece of paper." Definitions A polygonal complex is a space obtained by gluing together polygons, edges, and vertices, where by que we mean that we identify edges w/ edges and vertices w/ vertices (could glue polygon to self)

Definitions	Let	X = pol	ygonal con	nplex	w/			
			= # of					
	•	E(X) =	= # of	edge	2.5			
			# of	_				
	The	Euler c	.haracterist	ic of	X is			
						(X) + F()	/ \	
			λ (٨)	- V		(~) (F (/	\)	

2) Torus
$$\chi \left(\frac{1}{2} \right) = 16 - 19 + 2 = -1$$

$$\chi \left(\frac{1}{2} \right) = 1 - 2 + 1 = 0$$
3) Sphere

Examples: 1) Random Polygonal Complex

Let X and Y be polygonal complexes that are homeomorphic to the same surface. Then their Euler characteristics agree. $\chi(x) = \chi(Y)$ The Euler characteristic of a surface I is the Euler characteristic of any polyogonal cpx that is homeomorphic to E. To compute $X(\Sigma)$, break Σ up into regions and count Remarks the # of vertices, edges, and faces.

Exam	.ples :	1)	X ((S^2)	= ;	2.						
	•	2)	X ((T2)	2	0						
		ょ)	L	(kle	in bo	ttle!	= ace)	0				
		4)	X (geni	is 2	surf	oce)	=	- 2			

Sec	tion	2: (Colosia	195 0	t W	αρς										
				J		1										
Ques	tion :	•	Who	at is	the	Mini	imum	nu	mber	of	color	s ne	eded	, to	colo	-
													adja			
				ion5									0			
		•											eded	, to	دماه	-
													adj			
			•	ion5									0			
			J													

Definition:	Α	surf	ace	is	con	ipact	- 1:	f :+	adı	nits	a	polyg	onal	
													lges,	
			aces										J	
	4	Se	ecret	ر را	we	neede	ed to	o as	Sume	e the	at e	ur s	urfac	es
		u	vere	com	pact	wh	en 1	we .	defin	ed 4	he:r	Eule	er-	
				actes	•									

						1									+
Defin	itimo	A	geog	raph	ic o	ompl	ex a	2 5500	iate	d to	a	com,	pact		
											that				hic
			Σ				_							•	
								not	mee	t its	elf				
											e a	uniq	ue e	dge	
			3)	Aŧ	leas	st t	hree	face	.s m	eet	at e	ach ·	vert	ek.	
Remo	.rK:	Intu	uitivel	γ,	a c	reogr	aphi	. cp	x i	s a	map	. of	the	surfa	.ce
			Sai			J	l	'			·				
			_			w c	mnot	boa	der	itself					
					_						uni que	boa	rder		
											egions				

• The coloring number of a compact surface ∑ is

 $N(\Sigma)$ = produce a legal coloring of all geo. cpx associated to I.

.em	arK3	T _o	prove	the	the	eo rem	for	٤ -	SZ	is e	xtren	rely	q:\t:	cu I+.
		We	w:ll	pav	e it	for	火(z	<u>-) </u>	ι.					
Jota	ction °	Let	χ	be	the ,	geo.	срх	ass	ociat	ed t	。Σ	the	t	
		sat	isfies	•										
			ι)	N()	() =	N(Z	.)							
			2)	If	Y	is ,	anothe	sr de	20. (cρ×	a \$\$00	ciated	l to	Σ
							N(X)	_						

Lemma 0°	Every	face of	X has a	t least	N(X)-1	edges.	
Proof:						there exists	
			X w/s		s Han N	J(X)-1 edges	•
						a single verte	ex.
	71	is produce	s a new	geo. cp	x X.		

5) So
$$N(X') \leq N(X)$$

6) If $N(X') = N(X)$, then by assumption on X ,

 $F(X) \leq F(X') = F(X) - 1$

=> we actually must have $N(X') \leq N(X)$

7) So we may color X' w/ $N(X) - 1$ colors.

But this allows us to color X w/ $N(X) - 1$ colors.

Namely, we color X' , then since Y has less than

 $N(X) - 1$ edges, it has at most $N(X) - 2$ adjacent faces. So we can always pick on of the $N(X) - 1$ colors to color Y differently than all its adjacent faces. => $N(X) \leq N(X) - 1$, a contradiction.

8) => Every face of X has at least $N(X) - 1$ edges.

Lemma 1:
$$(N(X)-1) \cdot F(X) \stackrel{L}{=} 2 \cdot E(X)$$

Proof:

1) Every edge touches two unique faces.

=> Average # of edges per face is $2E(X)/F(X)$

2) By Lemma 0, each face has at least $N(X)-1$

edges

=> Average # of edges per face >> $N(X)-1$

?) Combining these inequalities,

 $N(X)-1 \stackrel{L}{=} 2E(X)/F(X)$

Lemma 2:
$$3V(X) \le 2E(X)$$

Proof °

1) Let \widetilde{X} = preglued collection of polygons that we glue together to produce X .

2) Note, $2E(X) = E(\widetilde{X})$

3) Since at least 3 faces meet at each vertex, $3V(X) \le V(\widetilde{X})$

4) Since \widetilde{X} is disjoint collection of polygons, $E(\widetilde{X}) = V(\widetilde{X})$

5) Combining, $2E(X) = E(\widetilde{X}) = V(\widetilde{X}) \ge 3V(X)$

3) =>
$$N(\Sigma)^2 - 7N(\Sigma) + 6 \cdot \chi(\Sigma) \ge 0$$

4) This polynomial in $N(\Sigma)$ is upwards opening w/at

least one point on $N(\Sigma)$ -axis.

5) => Largest $N(\Sigma)$ for which this holds is largest

zero of poly.

6) => $N(\Sigma) = \frac{7 + \sqrt{49 - 24 \cdot \chi(\Sigma)}}{2}$

Sect	ion	•	The	Cor	nect	Sum	• °t	surf	aces								
Defini	tio n	0	Giv	en t	wo s	iur fac	es.	X an	4 Y	, th	e c	on nec	ct su	um o	t X	and	Υ,
			de	noted	ı X	. # Y	, is	. ol	taine	ed vi	a						
				ι)	Ren	rove	an c	pen c	lisk	fom	both	Χ	and	۴	to c	create	
										undar							
				2)								es t	ogeth	er '	to c	reate	
									_	X±			J				

	#T ¹	= 9,	enus.	2 5	urfac	:e				
	# S2 :									
	+	- 2	, 2							
3) S ²	# \	= T	. 2_							
4) T	#	# +	7	9 – £:,	mes	= .9	enu	5 .9	surf	ace.
								J		
X(X#	(Y) = ;	X(X)	+ 12	(Y)	- 2					
2	4) T	4)	4)	4) T ² ##T ² }	4) T ² ##T ² } g-ti	4) $T^2 \# \# T^2$ } g -times		4) $T^2 \# \# T^2$ } g -times = g enu	4) $T^2 \# \dots \# T^2$ } g -times = g enus g	4) $T^2 \# \# T^2$ } g -times = genus g surf

Proo	f :	ι)	Recall, we can compute the Euler characteristic of
			a surface by using any polygonal cox associated
			to it.
		2)	Pick poly coxes for X and Y that both have at
			least one face that is a 2-polygon w/ unique
	tist.		edges and vertices.
		3)	Removing said 2-polygons gives removal of disks
			from X and Y.
		4)	To glue, we glue together the boundaries of
			these removed 2-polygons.

5) This gluing gives poly cpx for
$$X \# Y = W$$

• Vertices = $V(X) + V(Y) - 2$

• Edges = $E(X) + E(Y) - 2$

• Faces = $F(X) + F(Y) - 2$

2) $\chi(\Xi \# \Xi') = V(X) + V(Y) - 2$
 $-(E(X) + E(Y) - 2)$
 $+ F(X) + F(Y) - 2$

		-	+									l		
Exam	ple ?		ı)	X	(geni	is 3	surf	ace)						
					=	X(丁²#	T2 #	≠ 丁²)				
					2	х(т	- ² # -	1 ²) +	· 2	(T~)	- 2			
								* ×				て~) .	- 2	
						- 4								
						•								
			2)	χ(genu	s q	surfa	ce) :	= ;	2 - 2	9			
						J					J			

Next	tine:	(۱	Orio	entab	:lity								
		2)	Clo	essific	ation	ર્	Surfa	rces	Theod	rem.			