Lecture \#3

Outline: 1) Review from last time
2) More on Planar diagrams
3) The Euler characteristic
4) Planarity of graphs
5) How to make new surfaces (if time permits)

Section 1: Review

Definition: A surface is space that locally looks like \mathbb{R}^{2} \rightarrow ie, zoom in close it just looks liter a "piece of paper."

Examples: (1) Sphere $=S^{2}$

(2) Torus $=T^{2}$
(3) Klein bottle
(4) Intertubes $w /$ multiple holes.

Remark: We want a way of viewing surfaces as combinatorial objects.
 Surfaces \longrightarrow Poly. apes $\xrightarrow{\text { Euler char. numbers }}$

Definition: A polygonal complex is a space obtained by gluing together polygons, edges, and vertices, where by glue we mean that we identify edges $w /$ edges and vertices w/ vertices (could glue polygon to self)

Example: (1) Graph

(2) Something wild

(4) Möbius Band

(5) Cylinder

Remark: 1) We can always breath surfaces up into polygonal apes \leftrightarrow A surface is homeomorphic to this associated polygonal complex
2) There are an infinite \# of ways we could breate it up
3) There are strictly infinitely many more polygonal coxes than surfaces.

Section: More on Planar Diagrams

Definition: A planer diagram is a polygonal complex obtained by gluing together all pairs of edges of a single $2 n$-polygon.

Examples:

1) Sphere

2) Torus

3)

He in bottle

4)

Genus 2 surface

Proposition: Every planar diagram is homeomorphic to a surface.

Proof : Need to show that locally about every point in the planar diagram the space lootes like \mathbb{R}^{2}.

- We have 3 possibilities

1) the point is a vertex
2) the point is in au edge
3) the point is in the polygon.

- We think about each case

- Punchline: the gluing required for a planar diagram forces us to patch together regions that don't look like \mathbb{R}^{2} in the "preglued" polygon into new regions that do look like \mathbb{R}^{2} in the "glued" polygon.
- Torus case:

Section: Euler Characteristic

Definition: Let $X=$ polygonal complex $w /$

- $V(x)=\#$ of vertices
- $E(x)=\#$ of edges
- $F(x)=\#$ of faces

The Euler characteristic of X is

$$
X(x)=V(x)-E(x)+F(x)
$$

Examples: 1) Graph

$$
x=10-13=-3
$$

2) Tree

$$
5: x=1=12-11=1
$$

3) Sphere 1

$$
x=8-12+6=2
$$

4) Torus

$$
\text { Ni : } x=1-2+1=0
$$

5) Sphere 2

$$
\text { (1) : } x=2-1+1=2
$$

6) Torus 2

$$
\begin{array}{l|l}
\square & \# \\
\hdashline & \#
\end{array}: x=4-8+4=0
$$

7) Klein bottle

$$
: x=1+-2+1=0
$$

Remark: It appears that the Euler characteristics of polygonal complexes that are homeomorphic to the same surface always agree
\leftrightarrow Think: Given two different maps/ways of breaking up a surface into regions, they will have the same Euler characteristic.

Proposition: Let X and Y be polygonal complexes that are homeomorphic to the same surface. Then their Euler characteristics agree.

$$
X(X)=X(Y)
$$

Proof:

- X and Y give two different ways of breathing our surface up into polygon-like regions
- We can "overlap" X and Y on our surface, adding vertices where the edges of X intersect the edges of Y, to produce a new polygonal cpa for the surface. Call it Z.

1)

2)

3)

- Note that one can obtain Z from X (similarly from Y) by

1) Adding edge between two vertices in a polygon
2) Adding vertex to interior of an edge
3) Adding vertex to the interior of a polygon and connecting it to an existing vertex via an edge.

- If these don't change the Euler characteristic, then repeatedly applying them to X to get Z will give

$$
x(x)=x(z) .
$$

Similarly for $Y, \quad X(Y)=x(Z)$.

- Type $1 \Rightarrow 1$ new edge, 1 face divided into 2

$$
\chi=V-(E+K i)+(F+\gamma)=V-E+F
$$

- Type $2 \Rightarrow 1$ new vertex, 1 edge divided into 2

$$
X=(V+x)-(E+x)+F=V-E+F .
$$

- Type $3 \Rightarrow 1$ new vertex, 1 new edge.

$$
\begin{aligned}
x & =(V+r)-(E+t)+F=V-E+F . \\
\Rightarrow \quad x(X) & =x(Z)=x(Y) .
\end{aligned}
$$

Definition: The Euler characteristic of a surface Σ is the Euler characteristic of any polyogonal $c p x$ that is homeomorphic to ε.

Remark: - To compute $\chi(\Sigma)$, break \sum up into regions and count the \# of vertices, edges, and faces.

- This allows us to prove that we are "logical beings".

Examples:

1) $x\left(s^{2}\right)=2$
2) $x\left(T^{2}\right)=0$
3) $x($ klein bottle $)=0$
4) $x($ genus 2 surface $)=1-4+1=-2$.

Definition: - A graph is a polygonal complex composed of edges.

- A graph is a tree if every pair of vertices is connected via a unique sequence of edges.

Definition: A graph is planar if it is given by the edges of a polygonal complex for S^{2}.

Fact: A graph is planar if it may be drawn in \mathbb{R}^{2} w/ out having edges infersecting/laying over each other

Proof: Remove a face from sphere and lay the remainder flat on the plane

Question: Is every graph planar?

Answer: No

Reason: The Euler characteristic of the sphere puts restrictions on how edges can come together.

Note: Let $K_{5}=$ graph w/ 5 vertices and 10 edges st every pair of vertices is connected by a unique edge.

Claim: $\quad K_{5}$ is not a planar graph.

Proof: - We use proof by contradiction. So we assume te is planar and derive a contradiction. Thus our assumption will be wrong and K_{5} must be non-plauar.

- If k_{5} is planar \Rightarrow determines poly. cpa for S^{2}, say X.
- By the Euler characteristic proposition from today,

$$
\begin{aligned}
2 & =x\left(s^{2}\right) \\
& =V(x)-E(X)+F(X) \\
& =V\left(k_{5}\right)-E\left(k_{5}\right)+F(x) \\
& =5-10+F(x) \\
\Rightarrow F(x) & =7
\end{aligned}
$$

- Note every face of X has at least 3 unique edges.
If not, then the two vertices on the face are connected via 2 different edges

$$
\xrightarrow{1160}
$$

But this can't happen for K_{5}

- We claim that $3 F \leq 2 E$

Let $\tilde{X}=$ denote the "preglued" collection of polygons that we glue together to form X.
Note \tilde{X} is itself a polygonal complex.
Note

$$
\begin{aligned}
2 E(x)=E(\tilde{x}) & \geqslant 3 F(\tilde{x})=3 F(x) \\
& C \text { used } \geqslant .
\end{aligned}
$$

- $\quad 21=7 \cdot 3=3 \cdot F(x) \leq 2 E(x)=2 E\left(k_{5}\right)=20$
\Rightarrow contradiction

Nexttime: 1) Colorings of Maps Theorem
2) Preliminaries for the Classification of surfaces.

