| ٤.  | ectu  | re# | 3     |        |      |       |       |        |     |       |     |                    |     |  |  |
|-----|-------|-----|-------|--------|------|-------|-------|--------|-----|-------|-----|--------------------|-----|--|--|
|     |       |     |       |        |      |       |       |        |     |       |     |                    |     |  |  |
| Out | line: | 1)  | Revie | ew f   | rom  | last  | time  | 2      |     |       |     |                    |     |  |  |
|     |       |     |       | e on   |      |       |       |        |     |       |     |                    |     |  |  |
|     |       | 3)  | The   | Eul    | er c | harac | eteri | stic   |     |       |     |                    |     |  |  |
|     |       |     |       | narity |      |       |       |        |     |       |     |                    |     |  |  |
|     |       |     |       |        |      |       |       | ur fac | ces | (:f 1 | ime | permi <sup>.</sup> | ts) |  |  |
|     |       |     |       |        |      |       |       |        |     |       |     |                    |     |  |  |
|     |       |     |       |        |      |       |       |        |     |       |     |                    |     |  |  |
|     |       |     |       |        |      |       |       |        |     |       |     |                    |     |  |  |
|     |       |     |       |        |      |       |       |        |     |       |     |                    |     |  |  |
|     |       |     |       |        |      |       |       |        |     |       |     |                    |     |  |  |

Section 1 : Review A surface is space that locally looks like IR2 Definition 8 ie, Zoom in close it just looks like a "piece of paper." Examples: 1 Sphere = 52 3 Torus = T2



Definitions A polygonal complex is a space obtained by gluing together polygons, edges, and vertices, where by que we mean that we identify edges w/ edges and vertices w/ vertices (could glue polygon to self) O Graph Exampleo 2 Something Wild



| Section:    | More or | Planar    | Diagrams     |           |           |           |              |  |
|-------------|---------|-----------|--------------|-----------|-----------|-----------|--------------|--|
|             |         |           |              |           |           |           |              |  |
| Definition: | A       | olaner d  | iagram is    | a poly    | jonal com | plex obto | rined by     |  |
|             | والنا   | ng togeth | er all pair  | s of edge | es of a   | single 2  | 2n - polygon |  |
|             |         |           |              |           |           |           |              |  |
| Examples:   | 1)      | Sphere    |              |           |           |           |              |  |
|             |         | 4         | <u> </u>     | , (       |           |           |              |  |
|             |         |           |              |           |           |           |              |  |
|             | 2)      | Torus     |              |           |           |           |              |  |
|             |         |           | <del>)</del> |           |           |           |              |  |
|             |         | 1         |              | ~_^>      |           |           |              |  |
|             |         |           |              |           |           |           |              |  |



| Propositions | Eve | ery p | lana | r di | agra | m is | s ho  | meom   | or ph | ic to | a                | surf | ace. |  |
|--------------|-----|-------|------|------|------|------|-------|--------|-------|-------|------------------|------|------|--|
| Proof:       | •   | Nee   | d to | s sh | ow 4 | hat  | local | ly ab  | out   | every | poin             | t in | the  |  |
|              |     | plan  | ar.  | diag | ram  | the  | Spa   | ce lo  | oles  | like  | $\mathbb{R}^2$ . |      |      |  |
|              |     | We    |      |      |      |      |       |        |       |       |                  |      |      |  |
|              |     |       | _    |      |      |      |       | vertex |       |       |                  |      |      |  |
|              |     |       |      |      |      |      |       | m ed   |       |       |                  |      |      |  |
|              |     |       |      |      |      |      |       | the po |       | ۸.    |                  |      |      |  |
|              | •   | We    |      |      |      |      |       |        | J     |       |                  |      |      |  |
|              |     |       |      |      |      |      |       |        |       |       |                  |      |      |  |
|              |     |       |      |      |      |      |       |        |       |       |                  |      |      |  |
|              |     |       |      |      |      |      |       |        |       |       |                  |      |      |  |



Section: Euler Characteristic

Definition: Let 
$$X = polygonal$$
 complex  $w/$ 
 $V(X) = \#$  of vertices

 $E(X) = \#$  of edges

 $F(X) = \#$  of faces

The Euler characteristic of  $X$  is

$$X(X) = V(X) - E(X) + F(X)$$

 $: \chi = 1 + -2 + 1 = 0$ 

5) Sphere 2

7) Klein bottle

It appears that the Euler characteristics of polygonal complexes that are homeomorphic to the same surface always agree -> Think & Given two different maps/ways of breaking up a surface into regions, they will have the same Euler characteristic. Let X and Y be polygonal complexes that are homeomorphic Proposition o to the same surface. Then their Euler characteristics agree.  $\chi(x) = \chi(Y)$ 

| Proc | , f % | • | Χ | and   | Y | give | two   | diffe | rent | ways | of | breat | cing e | our    |  |
|------|-------|---|---|-------|---|------|-------|-------|------|------|----|-------|--------|--------|--|
|      |       |   |   |       |   |      | polyg |       |      |      |    |       | J      |        |  |
|      |       | • |   |       |   |      |       |       | 1    |      |    | ırfac | e , a  | zdding |  |
|      |       |   |   |       |   |      |       |       |      |      |    |       |        | edges  |  |
|      |       |   |   |       |   |      | e a   |       |      |      |    |       |        |        |  |
|      |       |   |   | rface |   |      |       |       |      | J    |    |       |        |        |  |
|      |       |   |   |       |   |      |       |       |      |      |    |       |        |        |  |
|      |       |   |   |       |   |      |       |       |      |      |    |       |        |        |  |
|      |       |   |   |       |   |      |       |       |      |      |    |       |        |        |  |
|      |       |   |   |       |   |      |       |       |      |      |    |       |        |        |  |
|      |       |   |   |       |   |      |       |       |      |      |    |       |        |        |  |
|      |       |   |   |       |   |      |       |       |      |      |    |       |        |        |  |



Note that one can obtain Z from X (similarly from Y) by 1) Adding edge between two vertices in a polygon 2) Adding vertex to interior of an edge 3) Adding vertex to the interior of a polygon and connecting it to an existing vertex via an edge. If these don't change the Euler characteristic, then repeatedly applying them to X to get 2 will give  $\chi(x) = \chi(z)$ Similarly for Y , X(Y) = X(Z).

Type 1 => 1 new edge, 1 face divided into 2

$$\chi = V - (E + L) + (F + L) = V - E + F$$
• Type 2 => 1 new vertex, 1 edge divided into 2

$$\chi = (V + L) - (E + L) + F = V - E + F$$
• Type 3 => 1 new vertex, 1 new edge.

$$\chi = (V + L) - (E + L) + F = V - E + F$$
• =>  $\chi(\chi) = \chi(\chi) = \chi(\chi)$ .

Definition: The Euler characteristic of a surface 
$$\Sigma$$
 is the Euler characteristic of any polyogonal cpx that is homeomorphic to  $\Sigma$ .

Remark: • To compute  $\chi(\Sigma)$ , break  $\Sigma$  up into regions and count the # of vertices, edges, and faces.

• This allows us to prove that we are logical beings".

Examples: 11  $\chi(S^2) = 2$ 
2)  $\chi(T^2) = 0$ 
3)  $\chi(\text{klein bottle}) = 0$ 
4)  $\chi(\text{genus 2 surface}) = 1 - 4 + 1 = -2$ 

A graph is a polygonal complex composed of edges. · A graph is a tree if every pair of vertices is connected via a unique sequence of edges. A graph is planar if it is given by the edges of Definition 8 a polygonal complex for S2. Fact : A graph is planar if it may be drawn in R2 w/out having edges intersecting/laying over each other Proof: Remove a face for sphere and lay the remainder flat on the plane

| Question 8 | Is every graph planar?                                   |  |
|------------|----------------------------------------------------------|--|
|            |                                                          |  |
| Answer:    | No l                                                     |  |
| Reason:    | The Euler characteristic of the sphere puts restrictions |  |
|            | on how edges can come together.                          |  |
|            |                                                          |  |
| Notn &     | Let Ks = graph w/ 5 vertices and 10 edges st             |  |
|            | every pair of vertices is connected by a unique edge.    |  |
| Claim:     | Ks is not a planar graph.                                |  |
|            |                                                          |  |



| Proof | ° | • | We | use  | <i>જ</i> વ | of by | / COA | tradi    | ction,             | , S.  | we    | assun | ne K  | s is  |     |
|-------|---|---|----|------|------------|-------|-------|----------|--------------------|-------|-------|-------|-------|-------|-----|
|       |   |   |    |      | •          | •     |       |          | ontra              |       |       |       |       |       |     |
|       |   |   | •  |      |            |       |       |          | nd A               |       |       |       |       | olana | .c. |
|       |   | • |    |      |            |       | '     | $\smile$ | ter mi             |       |       |       |       |       |     |
|       |   |   |    | ıy X | ·          |       |       |          |                    | •     | •     | •     |       | •     |     |
|       |   | • |    | •    |            | r cl  | nasac | terist   | tic pi             | mposi | +; on | fæm   | to da | ر کر. |     |
|       |   |   |    |      |            | X (s  |       |          | •                  | •     |       |       |       |       |     |
|       |   |   |    |      | =          | V(X   | ) - 8 | E (X     | ) + F              | (x)   |       |       |       |       |     |
|       |   |   |    |      | =          | ٧(k   | -2) - | E(l      | ر <sub>5</sub> ) + | F()   | x)    |       |       |       |     |
|       |   |   |    |      | =          | 5     | - lc  | ) +      | F(X)               | )     |       |       |       |       |     |
|       |   |   | =  | > F( | (X) =      | 7     |       |          |                    |       |       |       |       |       |     |
|       |   |   |    |      |            |       |       |          |                    |       |       |       |       |       |     |

· Note every face of X has at least 3 unique edges. If not, then the two vertices on the face are connected via 2 different edges But this can't happen for Ks

Let 
$$\widetilde{X} = \text{denote the "preglued" collection of polygons}$$

That we glue together to form  $X$ .

Note  $\widetilde{X}$  is itself a polygonal complex.

Note

 $2E(X) = E(\widetilde{X}) > 3F(\widetilde{X}) = 3F(X)$ 

Used \*.

 $2I = 7.3 = 3F(X) \leq 2E(X) = 2E(K_S) = 20$ 

. We claim that 3 F ≤ 2 E

=> contradiction

| Nex- | ltime 8 | ı) | Col   | orings     | of M  | laps ' | Theor | em     |          |       |       |      |  |  |
|------|---------|----|-------|------------|-------|--------|-------|--------|----------|-------|-------|------|--|--|
| Nex  |         | 2) | Preli | J<br>minar | ies d | for t  | he C  | lassid | fication | on of | surfo | ces. |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |
|      |         |    |       |            |       |        |       |        |          |       |       |      |  |  |