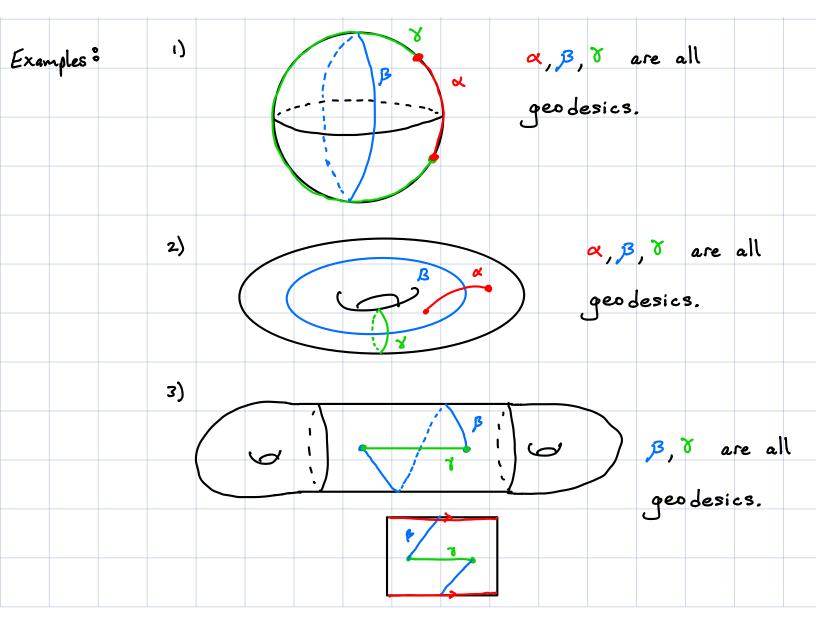
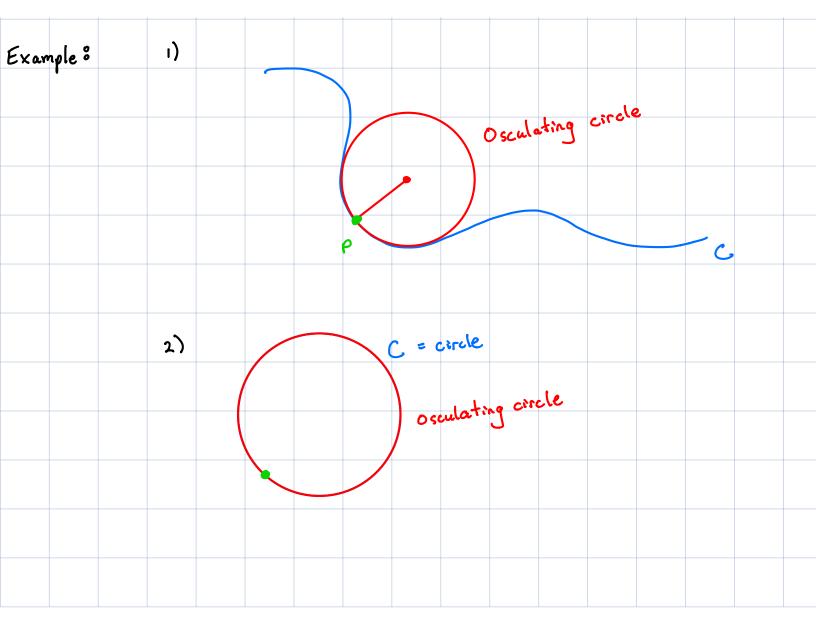
Le	ectu	re#	10										
Outl	line:	ı)	Me	trics	s ar	rd	Ison	netri	es				
		2)	Ge	odesi	دs								
		3)	Ga	.u.SSia	in C	urva	ture						
		4)	Gai	uss -	Bonn	et ·	Theore	em					
		5)	Q	k A									

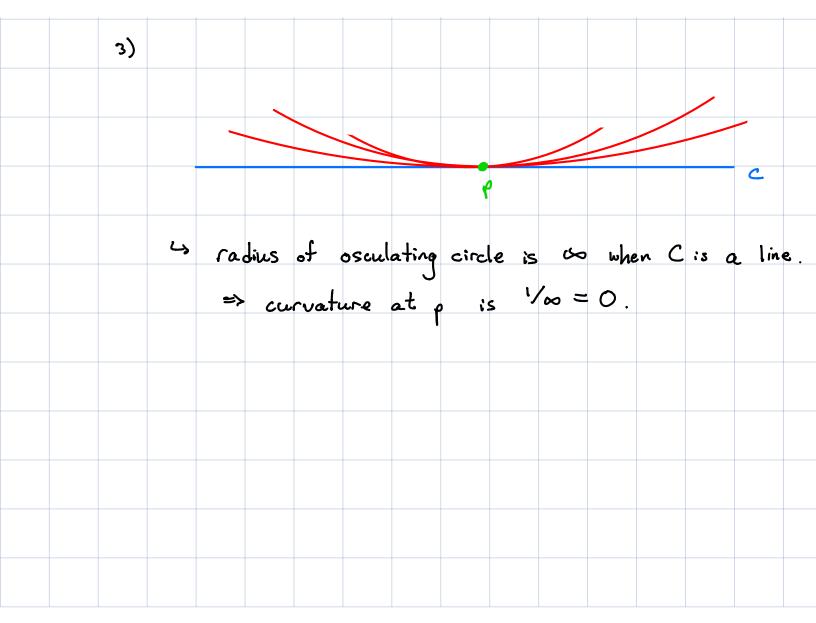

Section 18 Metrics and Isometries A surface is space that locally looks like IR2 Definition 8 ie, zoom in close it just boks like a "piece of paper." A metric on a surface \(\Sigma \) is a Hon d that assigns Definitions to every pair of points p, q E = a real #, d(p,q). This function satisfies 1) $d(p,q) \ge 0$ w/ zero only when p=q $^{2)}$ $d(\rho,q) = d(q,\rho)$ 3) $d(p,r) \neq d(p,q) + d(q,r)$

Intuitively, d(p,q) is the distance between p and q Remark: on E. S. the above conditions translate to 8 1) distance is always positive and is zero only when p=q2) the distance from p to q is the distance from 3) the distance from p to r is less than the distance from p to any intermediary point q plus the distance from r to the intermediary point q. (E,d) = surface Z w/a choice of metric d. Notation:

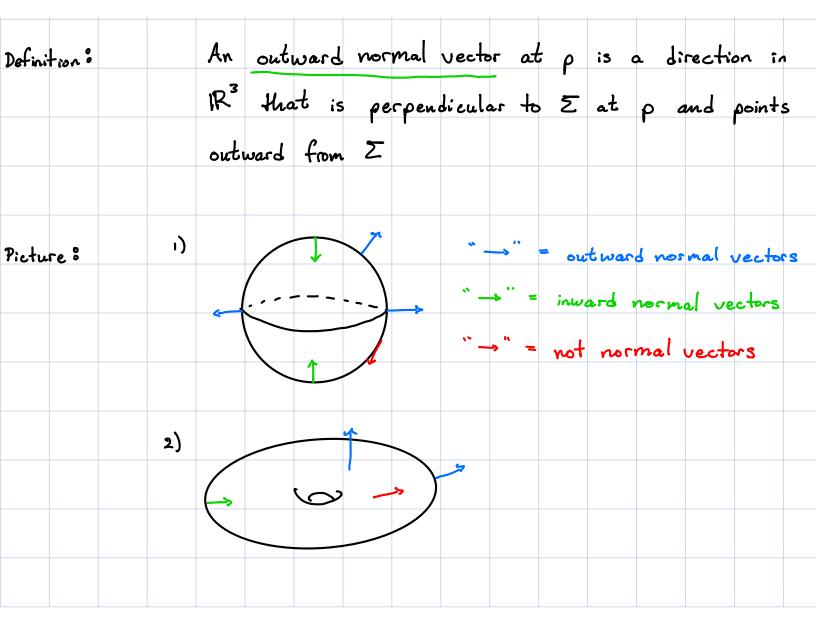
We can obtain a metric d on any surface Σ as Remark: follows : D) Embed I in IRN 2) $d(p,q) = length of shortest path on <math>\Sigma$ that connects p to q, where the length is measured wrt the usual distance in IRN. (Zo, do) and (\(\Si\), di) are isometric if they are Definition: homeomorphic in such a way that preserves distance wrt the metrics. L's ie, take points that are distance C apart to points that are distance C apart.

Examples 8	i)	Inflating/deflating the beach ball
\		S Not isometry
	2)	Rotating beach ball
		isometry
	3)	Slightly rolled piece of paper
		isometry.
Remark:	1)	We have moved beyond topology and into geometry.
		Now our deformations need not only preserve shape,
		but also distances/angles.

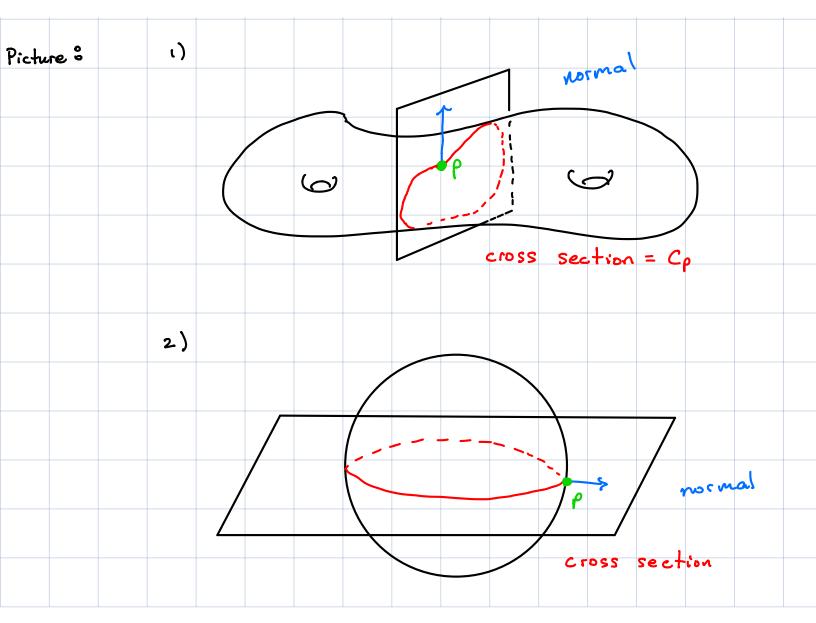

Section 2:	Geode	esics							U	mima	l dist	•		
									Y	P			۽ ھر	
Definition:	A	geo	desi	c on	(5	(لەر-	is	a. c	usve	that	. is	local	ly	
		fance												
Remark ⁸	(i	In	geon	retry	٥٢	eve	n se	eal l	ife,	;+ ;	s ve	ery 1	nard	
			9										-ywh	
		the	de s	wrte:	st p	ath.								
					•			she	rtes	t pa	th `	local	ا ر"را	e
													Car	
				ctual										
		بدا			•			strai	ght -	lines'	40	surf	aces	•

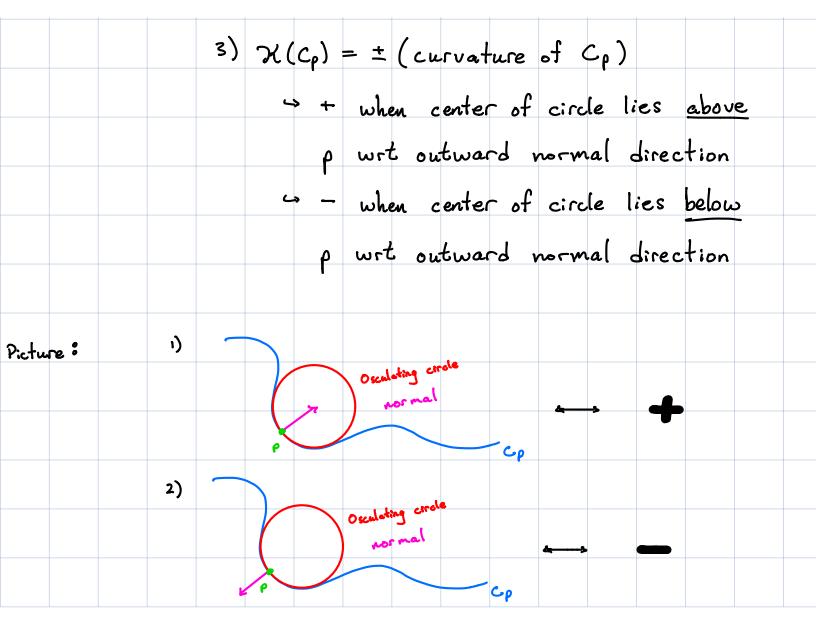


												and the second s				
Sec	tion	38	Ga	ussia	n Ci	ιςνα-	ture									
Remo	ırK i	١)	The	, qeo	metr	y of	a	space	e is	conc	erne	d w	/ ho	w cu	rrued	
				_						s not					_	
		2)		•						e do						
				ne e			7									
		3)					saus	Sian	curv	ature	², w	hich	will	qua	ntify	
										e fla				+	,	

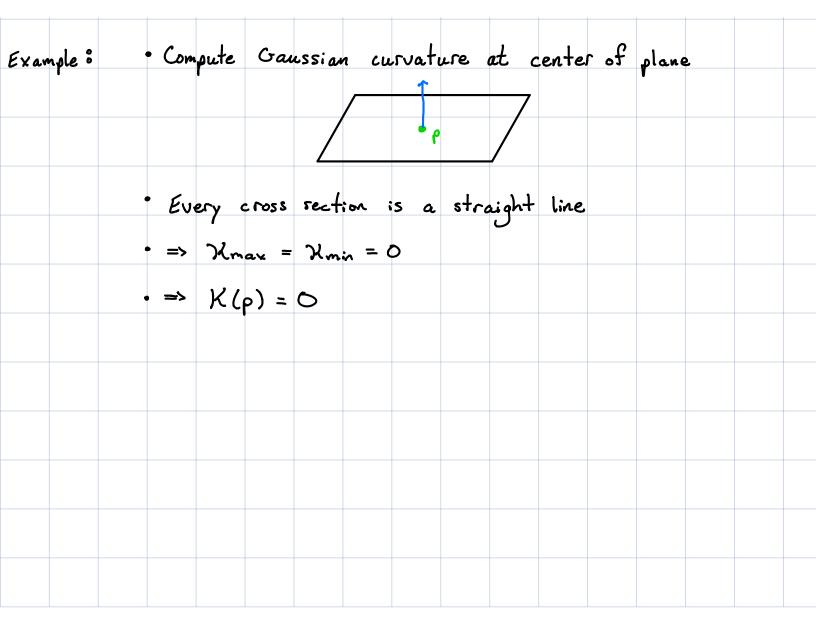

We will assume (Z,d) is a surface I that lives Notations in R3 and d(p,q) is the length of the shortest path in Z connecting p to q, where "length" is measured wrt usual distance in 123. All of the below defn/results generalize to orientable Remarks surfaces w/ more arbitrary metrics; however, we will just focus on the case above for ease/concreteness.

Defin	itions		ij	Let	٥	be	a	curv	e in	\mathbb{R}^2	an	d le	t p	be	a	
		,		poin	t on	۵.	The	020	ulatio	re cir	cle o	f C	at	ρ		
	P			·				IR								
								ve n				J			r	
			2)					f c				رہ ,	uhese			
								he o								
									7 0001	J						

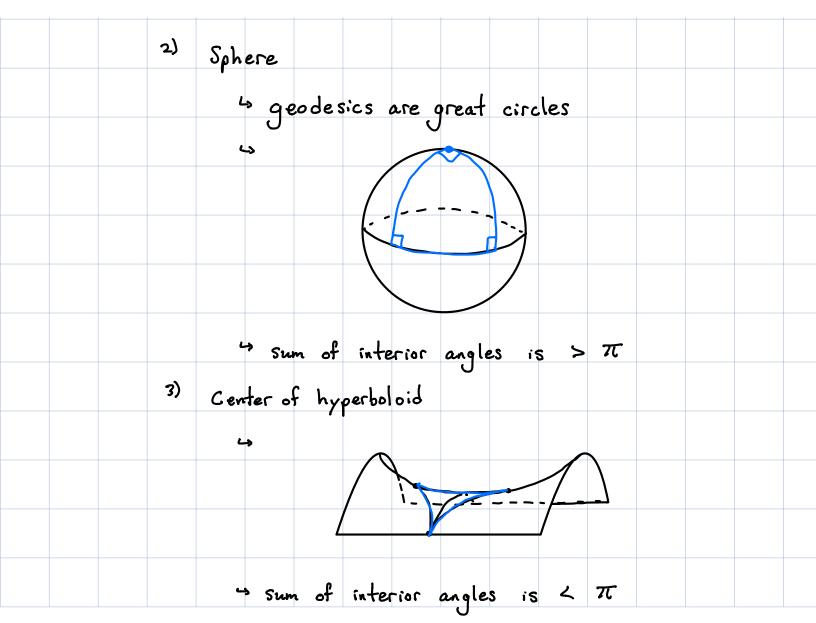




Example:	i)	Give	m a	fon	\$:	IR -	→ R	, we	z ok	tain	a c	urve	in 1	r R
•							graph							
	2)						scula			le d	2t ((×1)	2.1
							(1+	ر ۴′(×	1 ²) ^{3/2}	2				
							(1+	f"(x)						
	3)	So	the	curi			S Se				by	226.	-ord	er
			ivatiu						J		,			
	_				Ls :	4" [incı	ease.	S 80	doe	s c	ur va	.ture	2.
		(/ ر	,										



Defin	ition:	We	de	fine	the	Go	ussia	n ci	ısva	ture	of	Σ ο	t p		
				ws °											
					an	outw	ard	norm	ral v	ector	at	0.			
												•	cont	ains	
												ector			
												n a		re	
						·						ward	•		
						ector			f		Just				
				4				- sec	tion	of	٤ .	define	es a		
							Cp								
							٦		P. au						



		4)	\mathcal{X}_m	ax (p)	= m	axim	um C	urva	ture	amo	ng al	l pos:	sible	
					c	.mss	- sec	tion	curve	2S				
			X ,,	in (p)	= m	inimu	m Ci	urva:	lure	amor	ng all	ဝဝ ဒဒ	ible	
				·		ross					J	-		
		5)	The	cur	vatue	e of	Σ	at f	:5					
) = 7								

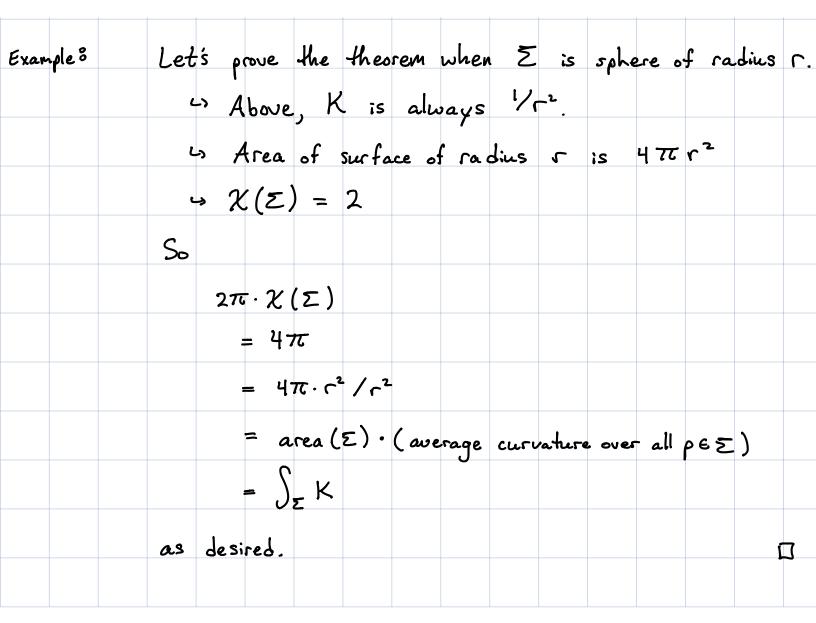
Theorem °	If	two	Jur	faces	are	isoy	netri	د ، ا	hen	they	have	the	
	San	ne (n 5 aus	Sian	cur	vatu	е.			•			
Corollary 8	An	y ma	p of	the	eart	h mu	.st d	istor	t di	stand	es.		
Proof s	1)	Plane	e is	flat	- =>	Gau	ssian	curv	vatur	e = (>		
		Sphe											
		Thm			_								
			=>	Wo i	identi	ficati	on o	f po	ints	that	pres	erves	
								jen		_	•		
										/			

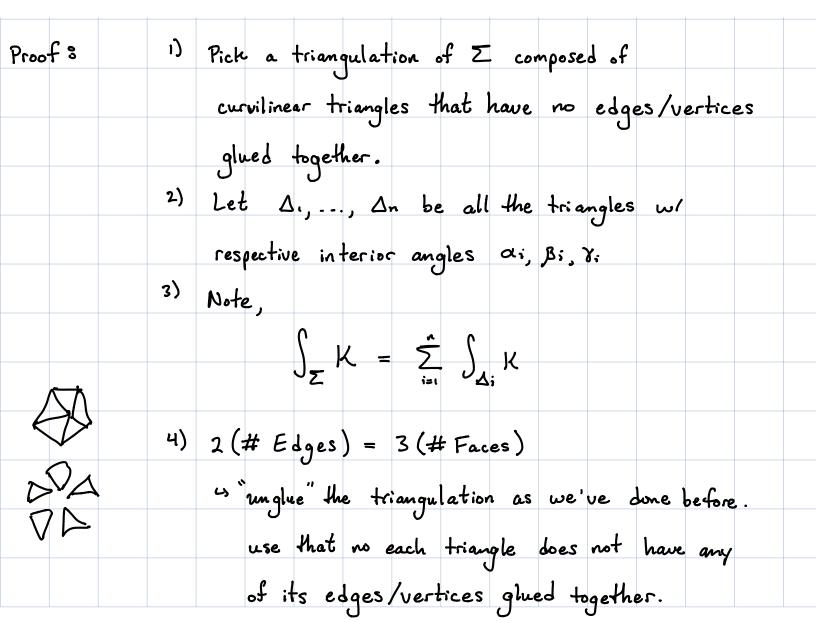
Section 4:	Gauss - B	onnet				
Definition:	A curv	vi-linear t	riangle on	(と,3)	is a tr	iangle whose
	edges	are geod	esics.			
Example:	1) A	curvi-lin	ear triangl	e in th	e plane	
		geodesic				
		sum e				•
				0		

Let &, B, 8 be the interior angles of a curvi-linear Theorem : triangle Δ in (Σ, d) . We have $\alpha + \beta + \gamma - \pi = \int_{\Delta} K$ **₽** 8 One can interpret JAK in two ways Remark: 1) K is a function on Σ . So we can integrate it over the region A. Jak is the surface integral of K over A 2) $\int_{\Delta} K = area(\Delta) \cdot (average curvature over all <math>p \in \Delta$)

Example: curvi-linear triangle in the plane

$$K \equiv 0$$


So theorem says: $\alpha + \beta + \gamma = \pi$


Theorem:

$$\int_{\Sigma} K = 2\pi \cdot \chi(\Sigma)$$

Remark: Again $\int_{\Sigma} K$ can be interpreted either as a surface integral or

$$\int_{\Sigma} K = area(\Sigma) \cdot (average curvature over all $p \in \Sigma$)$$

6)
$$\int_{\Sigma} K = \sum_{i=1}^{r} \int_{\Delta_i} K$$

$$= \sum_{i=1}^{n} (\alpha_i + \beta_i + \beta_i - \pi)$$

$$= \sum_{i=1}^{n} (\alpha_i + \beta_i + \beta_i) - \pi \cdot F$$

$$= 2\pi \cdot V - \pi \cdot F$$

$$= 2\pi \cdot V - 2\pi E + 3\pi F - \pi \cdot F$$

5) $2\pi \cdot (\# \text{ Vertices}) = \sum_{i=1}^{n} (\alpha_i + \beta_i + \delta_i)$

$$= 2\pi \cdot (V - E + F)$$

$$= 2\pi \cdot 2(F)$$

 $= 2\pi \cdot \mathcal{X}(\Sigma)$

$$= 2\pi \cdot \chi(\Sigma)$$