Title: Zoom Lecture 2 Notes
Date: April $18^{\text {th }}, 2020$

Outline: 1) Introduction
2) Review of Word Groups
3) Review of Homology
4) Homology of Surfaces
5) Surface Embedding Theorem
6) Manifolds
7) Whitney's Embedding Theorem

Section: Introduction

Definition: A surface is a space that locally looks like $\mathbb{R}^{2}$.

Example: 1) Real Projective Plane

2) Torus


Definition: (Connect sum) The connect sum of two surfaces $X_{1}$ and $X_{2}$ is given by:
i) Remove closed distes in $X_{1}$ and $X_{2}$ to obtain two surfaces w/ boundaries, say $Y_{1}$ and $Y_{2}$.
ii) Glue $Y_{1}$ to $Y_{2}$ along their boundaries

We write $X_{1} \# X_{2}$ for the result.

Picture:


Example: 1) $T^{2} \# T^{2}$

2) $P^{2} \# T^{2}$


Theorem: (classification of surfaces) Every surface is homeomorphic to a connect sum $\underbrace{T^{2} \# \ldots \# T^{2}}_{r_{\text {copies }}} \# \underbrace{P^{2} \# \ldots \# P^{2}}_{s_{\text {copies }}} \# S^{2}$ for some $r, s \geqslant 0$

Example: Klein bottle $=P^{2} \# P^{2}$

Definition: (Embedding) An embedding of a surface $X$ is a continuous map $i: X \hookrightarrow \mathbb{R}^{N}$ st $i\left(x_{0}\right)=i\left(x_{1}\right) \Rightarrow x_{0}=x_{1}$ 4 i maps each point in $X$ to a unique point in $\mathbb{R}^{N}$

Example:

$$
\begin{aligned}
& \infty=\text { Embedded } \\
& \infty=\text { not embedded }
\end{aligned}
$$

Theorem: The following are equivalent

1) There exists an embedding $X \hookrightarrow \mathbb{R}^{3}$
2) $H_{2}(X) \neq 0$
3) $X$ is orientable
4) $X \simeq T^{2} \# \ldots \# T^{2} \# S^{2}$

Remark: What we already Know: What we will show:
(1) $\longrightarrow$ (2)

(3) $\Longleftrightarrow$ (4)

Section: Review of Word Groups

Definition: A word group consist of:

1) An alphabet $a_{0}, \ldots, a_{l}, a_{0}^{-1}, \ldots, a_{l}^{-1}$
2) List of generators $\omega_{1}, \ldots, w_{m}$ st each $w_{i}$ is word spelled wi alphabet
3) List of relations $r_{1}, \ldots, r_{n}$ st each $r_{i}$ is word spelled $w / w_{i}, w_{i}^{-1}$. Gives a group $\left\langle w_{1}, \ldots, w_{m} \mid r_{1}, \ldots, r_{n}\right\rangle$
4) Elements are words obtained from concatonating copies of $w_{i}$ or $w_{i}^{-1}$.
Two words are equiv if
i) Rearrange letters
ii) Cancel $a_{i} w / a_{i}^{-1}$
iii) Remove subword that is a $r_{i}$ or $r_{i}^{-1}$
5) Addition of words is by concatenation.

If $\left\{r_{i}\right\}=$ empty, then $\left\langle w_{1}, \ldots, w_{m}\right\rangle$ is called a free word group.
(7) Remark: (Gre How of word groups)

$$
\varphi:\left\langle w_{1}, \ldots, w_{n}\right\rangle \rightarrow\left\langle v_{1}, \ldots, v_{e}\right\rangle
$$

$\varphi$ is a group hoo when it assigns words in $W_{i}$ 's to words in $v_{j}$ 's

Remark: $\varphi:\left\langle w_{1}, \ldots, w_{n}\right\rangle \rightarrow\left\langle v_{1}, \ldots, v_{e}\right\rangle$

$$
\operatorname{Ker}(\varphi)=\left\langle x_{1}, \ldots, x_{k}\right\rangle \text { st }
$$

$x_{i}=$ words in $w_{i}$ 's or $\omega_{i}^{-1} s$ st

$$
\varphi\left(x_{i}\right)=\text { empty word }=0
$$

$\leftrightarrow \operatorname{Ker}(\varphi)$ is a word group!

Example: $\varphi:\left\langle e_{0}, e_{1}, e_{2}\right\rangle \rightarrow\left\langle v_{0}, v_{1}, v_{2}\right\rangle$ (9)

$$
\begin{aligned}
& \varphi\left(e_{0}\right)=v_{2} v_{1}^{-1} \\
& \varphi\left(e_{1}\right)=v_{2} v_{0}^{-1} \\
& \varphi\left(e_{2}\right)=v_{1} v_{0}^{-1}
\end{aligned}
$$

What is $\operatorname{Ker}(\varphi)$ ?
LHS, gen. word looks like $e_{0}^{n} e_{1}^{k} e_{2}^{e}$

$$
\begin{aligned}
\varphi\left(e_{0}^{n} e_{1}^{k} e_{2}^{l}\right) & =v_{2}^{n} v_{1}^{-n} v_{2}^{k} v_{0}^{-k} v_{1}^{l} v_{0}^{-l} \\
& \stackrel{?}{=} 0
\end{aligned}
$$

Happens when: $n=-K, n=l, l=-K$

$$
\begin{aligned}
\Rightarrow n=l & =-k \\
\Rightarrow \operatorname{Rer}(\varphi) & =\left\{e_{0}^{n} e_{1}^{-n} e_{2}^{n}\right\} \\
& =\left\langle e_{0} e_{1}^{-1} e_{2}\right\rangle
\end{aligned}
$$

Remark: If $B \subseteq\left\langle w_{1}, \ldots, w_{n}\right\rangle=G$ is a collection of wards obtained from $w$;

$$
B=\left\langle b_{0}, \ldots, b_{k}\right\rangle
$$

Then we obtain new word group $G / B$

$$
G / B=\left\langle w_{1}, \ldots, w_{n} \mid b_{0}, \ldots, b_{k}\right\rangle
$$

Example:

$$
\begin{aligned}
& \langle b\rangle \subseteq\langle a, b, c\rangle \\
& \Rightarrow\langle a, b, c \mid b\rangle \cong\langle a, c\rangle
\end{aligned}
$$

Section: Review of Homology

Construction: Let $X=$ polygonal complex.
Pick direction for each edge Pick orientation of each polygon Ls way to sweep out edges. These need to be compatible w/ any gluing that we did. Recall diff between Torus and Klein bottle.

Remark: By "sweep", I mean clockwise or counter-clockwise direction to read of seq. of edges on boundary

Example: 1)

2)

(11) Construction: (contimed)

Label vertices: $v_{0}, \ldots, v_{e}$
edges: $e_{0}, \ldots, e_{n}$
faces: $f_{0}, \ldots, f_{m}$
Define

Define

$$
\left.\begin{array}{rl}
\partial_{2}(\text { face }) & =\partial_{2}\left(\begin{array}{c}
e_{7} \\
e_{8} \\
e_{8}
\end{array}\right) \\
& =e_{q}^{-1} e_{8} e_{7} e_{2} e_{1}
\end{array}\right)
$$

Lemma: $\partial_{1} \cdot \partial_{2}=0$ and consequently

$$
\operatorname{Im}\left(\partial_{2}\right) \subseteq \operatorname{Ker}\left(\partial_{1}\right)
$$

Definition: The homology groups of $X$ are

$$
H_{0}(x)=\left\langle v_{0}, \ldots, v_{e} \mid \partial_{1}\left(e_{0}\right), \ldots, \partial_{1}\left(e_{n}\right)\right\rangle
$$

$\rightarrow$ Spse $\partial_{1}(e)=V w^{-1}$
$\Rightarrow V \simeq w$ as words
$\Rightarrow H_{0}=\#$ of connected components $w /$ one vertex for each component

$$
\begin{aligned}
H_{1}(X) & =\operatorname{Ker}\left(\partial_{1}\right) / \operatorname{Im}\left(\partial_{2}\right) \\
& =\left\langle x_{0}, \ldots, x_{k} \mid \partial_{2}\left(f_{0}\right), \ldots, \partial_{2}\left(f_{n}\right)\right\rangle
\end{aligned}
$$

$=$ words that form loops.
Two loops are equiv if we can push across faces.

$$
\begin{aligned}
H_{2}(x) & =\operatorname{ker}\left(\partial_{2}\right) \\
& =\left\langle y_{1}, \ldots, y_{b}\right\rangle
\end{aligned}
$$

where $\partial_{2}\left(y_{i}\right)=0$
$\longrightarrow \partial_{2}=0$ iff edges pair off

$$
\partial_{2}(y)=e_{0} e_{1}^{-1} e_{2} e_{1}^{-1} e_{0}^{-1} e_{1}^{2} e_{2}^{-1}
$$

$\Rightarrow$ form 2-dim'l voids.

Example:


$$
\begin{aligned}
& H_{0}=\left\langle v, w \mid v w^{-1}\right\rangle \cong\langle v\rangle \\
& \operatorname{Im}\left(\partial_{2}\right)=\partial_{2}(F)=c b
\end{aligned}
$$

For $\operatorname{Ker}\left(\alpha_{1}\right)$ we notice that

$$
\begin{aligned}
& \partial_{1}(a)=w v^{-1} \\
& \partial_{1}(b)=w v^{-1} \\
& \partial_{1}(c)=v w^{-1} \\
& \partial_{1}(d)=v w^{-1}
\end{aligned}
$$

So

$$
\partial_{1}(\text { ad })=10 x^{2}+x-->=0
$$

One can deduce

$$
\operatorname{Ker}\left(\alpha_{1}\right)=\left\langle a d, a b^{-1}, d c^{-1}, b c\right\rangle
$$

Consequently,

$$
\begin{aligned}
H_{1} & =\left\langle a d, a b^{-1}, d c^{-1}, b c \mid c b\right\rangle \\
& =\left\langle a d, a b^{-1}, d c^{-1} \mid c b\right\rangle
\end{aligned}
$$

(15)

Section: Homology of Surfaces

Claim: $X=$ surface, than $H(X)$ is independent of the choice of polygonal structure.

Question: (1) What is $H(X)$ when

$$
X=T^{2} \# \ldots \# T^{2}
$$

(2) What is $H_{2}(X)$ when

$$
X=T^{2} \# \ldots \# T^{2} \# P^{2} \# \ldots \# P^{2}
$$

Answer:
(1) $H_{2}(x) \neq 0$
(2) $H_{2}(X)=0$

Solution: $X=$ surface, then to compute $H(X)(17)$ we should pick a nice polygonal str. Using the connect sum operation w/ planar diagrams, we could create a planar dam for a genus $g$ surface by gluing edges of 4 g -gon to themselves in pairs as illustrated below.

$$
g=2:
$$


$g=$ arbitrary:

For $g=2$, this look like


$$
\begin{aligned}
& H_{0}=\langle v\rangle \\
& \begin{aligned}
& H_{1}=\left\langle a_{1}, b_{1}, a_{2}, b_{2}\right\rangle \\
& H_{2}\left(T^{2} \not T^{2}\right)=\operatorname{Ker}\left(\partial_{2}\right) \\
& \partial_{2}(F)=a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \\
&=0
\end{aligned}
\end{aligned}
$$

$\Rightarrow \operatorname{Ker}\left(\partial_{2}\right) \neq 0$

$$
\Rightarrow H_{2} \neq 0
$$

The argument for $g=$ arbitrary is similar.

Solution:


We compute

$$
\begin{aligned}
& \partial_{2}(F)=b a^{-1} b^{-1} a c c=c^{2} \neq 0 \\
\Rightarrow & \operatorname{Ker}\left(\partial_{2}\right)=0 \\
\Rightarrow & H_{2}=0
\end{aligned}
$$

The more general case is analogous.

Section: Proof of Surface Embedding The
Theorem: The following are equivalent

1) There exists an embedding

$$
X \hookrightarrow \mathbb{R}^{3}
$$

2) $H_{2}(X) \neq 0$
3) $X$ is orientable
4) $X \simeq T^{2} \# \ldots \# T^{2} \# S^{2}$

Remark: What we already know:
What we show today:
What we will show now:
(1)

(3)


Claim: If $X$ can be embedded in $\mathbb{R}^{3}$, then $H_{2}(X) \neq 0$.

Idea: "Pretend" that $X$ has an "inside and outside". We orient faces via a right hand rule:


Of course, apriori we don't know what is "inside and outside". But every time a line meets $X$ it either "enters" or "exits" which is enough to get orientations that will cancel out on edges to produce a 2 -dim' $l$ void and thus $H_{2} \neq 0$.

Proof: The proof will be broken up into parts.

1) What we need to show. If we can orient all the faces so that any two adjacent faces always satisfy:

then $\partial_{2}\left(F_{1} \ldots F_{K}\right)=0$

$$
\Rightarrow H_{2}(X)=\operatorname{Ker}\left(\partial_{2}\right) \neq 0 .
$$

Indeed, this implies that edges in $\partial_{2}\left(F_{1} \ldots F_{k}\right)$ will pair off in cancelling pairs of edges.
2) Simplifying the geometry. Since $H_{2}(X)$ is ind. of poly. str. we pick a structure st each face is never glued to itself $\rightarrow$ ie, not


To obtain this we just "refine" faces until we achieve it:



$\leadsto$

3) Simplifying the Embedding.

We have $X \hookrightarrow \mathbb{R}^{3}$.
Fix a direction in $\mathbb{R}^{3}$
After rotating/translating $X$ and refining poly. structure, we may assume:

1) $X$ is above $x y$-plane
2) Every line
$\ell(x, y)=$ vertical line through the point $(x, y)$
meets each face at most once
3) $\quad l(x, y)$ never "runs along" an edge in $X$.
$\rightarrow$ Again, we may need to refine the polygonal structure to obtain this result.

Picture: (1)

(2)

(3)

4) Assigning orientations.

Given $F=$ face
Pick $(x, y)$ st $l_{(x, y)} \cap F \neq \varnothing$
Let $x_{1}, \ldots, x_{k}=$ ordered intersection points of $\ell(x, y)$ w/ $X$
Spae $\ell_{(x, y)} \cap F=X_{l}$
Define orientation for $F$ by


Picture:

5) Orientations are well-defined Spse $\left(x^{\prime}, y^{\prime}\right)$ also has $\ell_{\left(x^{\prime}, y^{\prime}\right)} \cap F \neq \phi$ Push $\ell_{x, y} \leadsto l_{x^{\prime}, y^{\prime}}, 2$ things can happen:

1) don't cross edge
2) cross edge (s)

If (1), then we don't lose any intersections
$\Rightarrow$ same sign
If (2), then either
(a) cross one face into another (b) push off two faces at once $\Rightarrow$ parity of $l$ will remain the same.
$\Rightarrow$ well-defined, ie, orientation didn't depend on $\ell(x, y)$.
6) Check adjacency condition. Sase $F_{1}, F_{1}$ share edge $e$ Pick $(x, y)$ st $\ell(x, y)$ lies close to $e$ and $\ell_{(x, y)} \cap F_{0} \neq \varnothing$ Push $l(x, y)$ across $e$. Either

1) $\ell$ slides over into $F_{1}$
2) $\ell$ slides off $F_{0}$ and $F_{1}$
$\Rightarrow$ sweep opposingly across e.
which is what we originally wanted!

Picture: 1)

2)


Section: Manifolds
(31)

Definition: (Manifold) An $n$-manifold is a space that locally looks like $\mathbb{R}^{n}$.

Example: circle $=1$-manifold
surface $=2$-manifold

Example i $S^{\prime}=[0,1] w /$ end points identified

$S^{2}=$ disk $w /$ boundary pts identified


$$
S^{n}=\left(B^{n}=n-\operatorname{dim}^{\prime} l \text { ball }\right) w /
$$

points on boundary all collapsed to a unique point.

Example: We have another (equivalent) description of spheres

$$
\begin{aligned}
& \text { Circle }=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \\
& S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} \\
& S^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+z^{2}+w^{2}=1\right\} \\
& \vdots \\
& S^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} x_{i}^{2}=1\right\}
\end{aligned}
$$

These give rise to std embeddings:

$$
\begin{aligned}
& S^{1} \hookrightarrow \mathbb{R}^{2} \\
& S^{2} \hookrightarrow \mathbb{R}^{3} \\
& S^{3} \hookrightarrow \mathbb{R}^{4} \\
& \vdots \\
& S^{n} \hookrightarrow \mathbb{R}^{n+1}
\end{aligned}
$$

Theorem: For every group $G$ and $n \geqslant 4$, there exists an $n$-manifold $M^{n}$ st

$$
\pi_{1}\left(M^{n}\right)=G
$$

Theorem: It is impossible to classify all groups.

Corollary: There is no classification of $n$-manifolds for $n \geqslant 4$

Remark: For $n=2$, we proved the classification the For $n=3$, there is a classification theorem but it is much more complicate.
$c$ It is intimately related to knots

Section: Whitney's Embedding Theorem

Theorem: (Whitney) Every $n$-manifold can be embedded in $\mathbb{R}^{2 n}$.

Theorem: (Whitney) Every $n$-manifold that can be covered by a finite collection of $n$-dim'l balls can be embedded in $\mathbb{R}^{N}$ for some $N$.

Proof: Let $B_{1}, \ldots, B_{k}$ be the balls that cover $M$ Associated to each $B_{i}$, we have a composition

$$
M \xrightarrow{\stackrel{(1)}{\longrightarrow} M \cup S^{n} \xrightarrow{(2)} S^{n} \xrightarrow{(3)}} \mathbb{R}^{n+1}
$$

(1) Pinch the boundary of $B_{i}$ to a point
(2) Collapse $M$ part to a single point
(3) Std embedding

Picture:
(I)

(35)

Proof: (continued)
$\varphi_{i}: M \rightarrow S^{n} \hookrightarrow \mathbb{R}^{n+1}$
Note $\varphi_{i}$ embeds $B_{i}$ in $\mathbb{R}^{n+1}$,
but sends points outside of $B_{i}$ to same point
Combine them to obtain embedding!
Def

$$
\Phi: \mu \rightarrow \mathbb{R}^{n+1} \times \ldots \times \mathbb{R}^{n+1}=\mathbb{R}^{k n+k}
$$

By

$$
\Phi(p)=\left(\varphi_{1}(p), \ldots, \varphi_{k}(p)\right)
$$

This is an embedding.
Indeed, if $\Phi(p)=\Phi(q)$, then $\varphi_{i}(p)=\varphi_{i}(q) \quad \forall i$.
$\Rightarrow p, q$ in same ball, say $B_{i}$

$$
\Rightarrow \varphi_{j}(p)=\varphi_{j}(q)
$$

$\Rightarrow$ same since $\varphi_{j}$ embeds points in $B_{j}$.

