Title :	Zoom Lecture 2 Notes	1) Section: Introduction	Ø
Date :	April 18th, 2020		
		Definitions A surface is a space that locally	
Outline *	1) Introduction	looks like R ² .	
	2) Review of Word Groups		
	3) Review of Homology	Example: 1) Real Projective Plane	
	4) Homology of Surfaces		
	5) Surface Embedding Theorem	a for a no can't picture.	
	6) Manifolds		
	7) Whitney's Embedding Theorem		
		2) Torus	
		$b \rightarrow b = (a) \rightarrow b$)

		1				
Theorem •	(Classification of surfaces) Every (5)	Theorem: The	e follor	wing are	equivalent	6
	surface is homeomorphic to a connect		N TL	lere exists	t on embedding X	$(- 1 R^3)$
	$sum T^2 # # T^2 # P^2 # # P^2 # S^2$		2) H	l₂ (X) ≠ C		
	r copies 5 copies		3) >	K is orien	table	
	for some (, s > 0		ч) у	< ≃ Τ [*] #	# T ² # S ²	
Example :	$2 \text{ Klein bottle} = P^2 \# P^2$	Remark: Wh	at we	already	Know:	
		Wh	nat we	will show	, : 🏇	
Definition	(Embedding) An embedding of a surface					
	X is a continuous map $i: X \hookrightarrow \mathbb{R}^N$			1 -	→ ②	
	st $i(x_{\circ}) = i(x_{1}) \Longrightarrow x_{\circ} = x_{1}$			L.		
	is many each point in X to a				▶ ↓	
	unique point in IRN			3 🥧	→ (4)	
Example ⁸	(co) = Embedded					
-						
	= not embedded					

 Section: Review of Word Groups (7) Remarks (Grp Hom of word groups) (8) Pi < w_{1,}, w_n > → < v_{1,}, v_n > Petinitians A word group consist of: (1) An alphabet a₀,, a₁, a₁,, a₁, words in Wi's to words in Vy's (2) List of generators w_{1,}, w_m st (3) List of relations r_{1,}, r_n st (4) Ker (P) = < ×_{1,}, ×_N > st (5) Gives a group < w_{1,}, w₁ r₁,, r_n > (6) Elements are words obtained from (7) Elements are words obtained from (8) Ker (P) is a word group ! (9) Elements are words obtained from (10) Ker (P) is a word group ! (11) Remove subword that is a r₁ or s₁¹ (11) Remove subword that is a r₁ or s₁¹ (11) Remove subword that is a r₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ (11) Remove subword that is a v₁ or s₁¹ 			
Peticitime A word group consist of : Peticitime A word group consist of : P is a group how when it assigns P is a group how when it assigns words in Wi's to words in Vy's P is a group how when it assigns P is a group is a words in Vy's P is a word in Vy's P is a group is a word group in Caucationabing copies of Wis or With P is a word group is a word group is P is a word group is a word group is P is a word group is a word group is a word group is P is a word group is a word group is a word group is a word group is P is a word group is a word group is a word group is a word group is P is a word group is a word	Section ⁸	Rev	view of Word Groups (7) Remarks (Grp Hom of word groups) (8)
Definition: A word group consist of: 1) An alphabet ao,, a.g., a_{i}^{-1} ,, a_{i}^{-1} words in Wi's to words in Vj's 2) List of generators $w_{i},, w_{m}$ st each Wi is word spelled w' alphabet Remark: $\varphi: \langle w_{i},, w_{n} \rangle \longrightarrow \langle V_{i},, Ve \rangle$ 3) List of relations $r_{i},, r_{n}$ st each r_{i} is word spelled w' w_{i}, w_{i}^{-1} . Gives a group $\langle w_{i},, w_{m} r_{i},, r_{n} \rangle$ $\varphi(x_{i}) = empty word = 0$ $\psi(x_{i}) = empty $			$\varphi:\langle w_1,,w_n\rangle \longrightarrow \langle v_1,,v_e\rangle$
1) An alphabet $a_0,, a_k, a_0^{-1},, a_k^{-1}$ words in $Wi's$ to words in $V_j's$ 2) List of generators $w_{i_1},, w_{i_k}$ st each Wi is word spelled W' alphabet Remark: $\mathcal{P}: \langle w_{i_1},, w_k \rangle \rightarrow \langle V_{i_1},, v_k \rangle$ 3) List of relations $\Gamma_{i_1},, \Gamma_n$ st $Ker(\mathcal{P}) = \langle X_{i_1},, X_k \rangle$ st each Γ_i is word spelled W' $W_{i_1}, W_{i_1}^{-1}$. Gives a group $\langle W_{i_1},, w_n \Gamma_{i_1},, \Gamma_n \rangle$ $\mathcal{P}(X_i) = empty word = 0$ 1) Elements are words obtained from $\Sigma Ker(\mathcal{P})$ is a word group 1. cancentenating copies of W_i or W_i^{-1} . Two words are equiv if i) Rearrange letters ii) Cancel $a_i w/a_i^{-1}$ iii) Remove subword that is a $\Gamma_{i_1} errial iii) Remove subword that is a \Gamma_{i_1} errial iiii) Remove subword that is a \Gamma_{i_1} errial errial$	Definitions	A	word group consist of ? P is a group hom when it assigns
2) List of generators $w_{1},, w_{m}$ st each w_{i} is word spelled w_{i} alphabet Remark: $\varphi: \langle w_{1},, w_{n} \rangle \longrightarrow \langle V_{1},, Ve \rangle$ 3) List of relations $r_{1},, r_{n}$ st each r_{i} is word spelled w_{i} w_{i}^{-1} . Gives a group $\langle w_{1},, w_{n} r_{1},, r_{n} \rangle$ $\varphi(x_{i}) = empty word = 0$ 1) Elements are words obtained from $\psi (x_{i}) = empty word = 0$ 2) Elements are words of twing or w_{i}^{-1} . Two words are equiving if i) Rearrange letters ii) Cancel ai $w_{i} a_{i}^{-1}$ iii) Remove subword that is a $r_{i} \circ r_{i}^{-1}$ 2) Addition of words is by concatenation. The first empty words is by concatenation. The first empty words is by concatenation.		1)	An alphabet ao,, ae, ao',, ai words in Wi's to words in Vi's
each Wi is word spelled w/ alphabet Remark: $\varphi: \langle w_{1},, w_{n} \rangle \longrightarrow \langle v_{1},, v_{n} \rangle$ 3) List of relations $r_{1},, r_{n}$ st $Ker(\varphi) = \langle x_{1},, x_{k} \rangle$ st each r_{i} is word spelled w/ w_{i}, w_{i}^{-1} . Gives a group $\langle w_{i},, w_{n} r_{1},, r_{n} \rangle = \varphi(x_{i}) = empty word = 0$ ϑ Elements are words obtained from $\varphi(x_{i}) = empty word = 0$ ϑ Elements are words obtained from $\varphi(x_{i}) = empty word = 0$ $\psi(x_{i}) = empty word = 0$		2)	List of generators w.,, win st
3) List of relations $r_{1},, r_{n}$ st each r_{i} is word spelled $w(w_{i}, w_{i}^{-1})$. Gives a group $\langle w_{i},, w_{n} r_{i},, r_{n} \rangle$ $\varphi(x_{i}) = empty word = 0$ $P(x_{i}) = empty word = 0$ $P(x_{i}) = empty word = 0$ $\varphi(x_{i}) = empty word = 0$ φ			each wi is word spelled w/ alphabet Remark: P: <w,, wn=""> -> < V1,, Ve></w,,>
each Γ_i is word spelled w/ W_i , W_i^{-1} . Gives a group $\langle W_1,, W_m \Gamma_1,, \Gamma_n \rangle$ $\mathcal{P}(X_i) = empty word = 0$ $\mathcal{P}(X_i) = empty word $		3)	List of relations ri,, rn st Ker(P) = < X1,, XX7 st
Gives a group $\langle w_{1,,} w_{n} \tau_{1,,} \tau_{n} \rangle$ $\varphi(\chi_{i}) = empty word = 0$) Elements are words obtained from $\langle w_{i} r_{i} \rangle$ caucatonating copies of w_{i} or w_{i}^{-1} . Two words are equiv if i) Rearrange letters ii) Cancel ai w/a_{i}^{-1} iii) Remove subword that is a $r_{i} \circ r_{i}^{-1}$ $iii)$ Remove subword that is a $r_{i} \circ r_{i}^{-1}$ i = 1 $r_{i} = 1$ $r_{i} = 1$			each ris word spelled w/ Wi, Wi'. X; = words in wi's or wi's st
 i) Elements are words obtained from cancetonating copies of Wi or Wi⁻¹. Two words are equiv if i) Rearrange letters ii) Cancel ai w/ ai⁻¹ iii) Remove subword that is a Vi or Si⁻¹ 2) Addition of words is by concatenation. The location of words is by concatenation. 		Giv	es a group $\langle w_{i,,w_m} F_{i,,F_n} \rangle \qquad \varphi(x_i) = empty word = 0$
$\begin{array}{c} cancetonating copies of w_{i} or w_{i}^{-1}. \\ \hline Two words are equiv if \\ i) Rearrange letters \\ ii) Cancel ai w/ a_{i}^{-1} \\ \hline iii) Remove subword that is a r_{i} or r_{i}^{-1} \\ \hline 2) Addition of words is by concatenation. \\ \hline Tf 2 Git = empty when first is a with the interval of words is the second $		Ŋ	Elements are words obtained from (> Ker (P) is a word group!
Two words are equiv if i) Rearrange letters ii) Cancel ai w/ a; ¹ iii) Remove subword that is a v; or r; ¹ ²) Addition of words is by concatenation. The formation of words is by concatenation.			cancetonating copies of w_i or w_i^{-1} .
i) Rearrange letters ii) Cancel ai w/a_i^{-1} iii) Remove subword that is a $v_i \circ v_i^{-1}$ ²⁾ Addition of words is by concatenation. The intervent of the second secon			Two words are equiv if
ii) Cancel ai u/a_i^{-1} iii) Remove subword that is a $v_i \circ s_i^{-1}$ ²⁾ Addition of words is by concatenation. The issue of the second that is a view is is a second that is a view in the view is a view is a view is a view in the view is a view if a view is a			i) Rearrange letters
iii) Remove subword that is a $r_i \circ r_i^{(i)}$ 2) Addition of words is by concatenation. The $ir_i = error transformation is the result of the result of$			ii) Cancel $a_i \ w/ \ a_j^{-1}$
2) Addition of words is by concatenation. The icitie emotion where the state and icities in the state of the			iii) Remove subword that is a rior ri
$Tf I \subset I = empty$ then I was a way $\geq ic$		٤	Addition of words is by concatenation.
		If	2ril= empty, then Lw, ,, wn > is
called a free word group.		call	les a free word group.

			+									1									1 1			
Exam	ple®	φ	:Ze	o,e	,e₂	> -	→ Ź	V۰,	v,,u	/2 >	٢	Rem	arK°	Τf	B	ç	ζw,	, ,	wn?	> =	G	is	م	10
				C	Р(e) =	٧z	ν <u>-</u> '						colle	ctio	r of	wa	rds i	obtai	ned	from	ω;	<u>,</u> .	
				9	p(ei) =	V2 1	v51								B	- <	b.,.	, b,	د ک				
					P (e2) =	٧, \	-1 /0						Then	l bre	. ob	tain	neu	l Wa	nd (ronp	G	/в	
		W	nat	is)	ler (Q)	?								C	10			1	ر الم		L. S	-	
		LH	5, q	en.	Word	d lo	oks	lika	e e	re, k	ez				0,	/ K -	- \ '	.,	-, wr		s, ,	or /		
		9	о (е	°е,	e ^r e ^r) = •	V2 V	V_1^{-n} V_2^{1}	κ . ν₀	VIU	,-l													
						=	0					Exar	nple®	< 2 k	~> <	ミく	a,b,	,c>	•					
		Ha	ppens	: wh	en °	n=	-K,	n =	l,,	l = -	- ĸ		-	=>	۲	a,b	, c 1	Ь≻	전 (ζa,	c >			
		=>	n=	= l	ر – =	ર																		
		=>	Ke.	r (9) =	{e	n -n o E,	ez	3															
					=	२ -	20 e,	e_2	>															
						-		-	-	-	-		-	-			-	-	-	-	-			

Section :	Review of Homology	D Construction: (continued)	P
		Label vertices? U.,, Ua	
Construction:	Let X = polygonal complex.	edges eo,,en	
	Pick direction for each edge	faces : fo,, fm	
	Pick orientation of each polygon	Define	
	43 way to sweep out edges.	$2 + C_{o}(X) = \langle \cup, \dots, \cup_{a} \rangle$	
	These need to be compatible w! any	$rC_1(X) = \langle e_0,, e_n \rangle$	
	gluings that we did. Recall diff	$\partial_2 (C_2(X) = \langle f_0,, f_m \rangle$	
	between Torus and Klein bottle.	Define	
		$\partial_2(face) = \partial_2 \left(e_2 \underbrace{e_1}_{i \neq e_1} e_i \right)$	
Remark:	By "Sweep", I mean clockwis	e (estea)	
	or counter-clockwise direction to	= e1 e2 e2 e1	
	read of seq. of edges on bound	ary $\partial_i (edge) = \partial_i (\underbrace{\bullet \bullet \bullet \bullet}_{\bullet \bullet \bullet})$	
		$= V_i v_o^{-1}$	
Example:	1) 1 5 4 5 1		
	a for	Lemma 3 3 , 0 $3_2 = 0$ and consequently	
	2)	$\operatorname{Im}(\partial_2) \subseteq \operatorname{Ker}(\partial_1)$	

Definitions The homology groups of X are (3)

$$H_{\lambda}(X) = Ker(\partial_{k})$$
 (1)
 $= \langle Y_{1}, ..., Y_{k} \rangle$
 $H_{0}(X) = \langle U_{2}, ..., V_{k} | \partial_{1}(e_{1}), ..., \partial_{1}(e_{1}) \rangle$
 $H_{0}(X) = \langle U_{2}, ..., V_{k} | \partial_{1}(e_{1}), ..., \partial_{1}(e_{1}) \rangle$
 $H_{0}(X) = \langle U_{2}, ..., V_{k} | \partial_{1}(e_{1}), ..., \partial_{n}(e_{1}) \rangle$
 $H_{1}(X) = Ker(\partial_{1}) / Im(\partial_{k})$
 $= Words that form loops.$
 $Two loops are equiv if we
can push across faces.$

Example:
a by
$$P_{2}$$
 a by P_{2} by P_{3} by $P_{$

Solution:
$$X = surface, then to compute H(X) (2)
we should piete a vice polygonal str.
Using the connect sum operation w/ planar
diagrams, we could create a planar dgm
for a genus g surface by gluing edges
of 4g gon to themselves in pairs as
illustrated below.
 $g = 2$:
 $a_1 \\ b_2 \\ b_3 \\ c_4 \\ c_5 \\ c_5 \\ c_6 \\ c_$$$

3) Simplifying the Embedding. (2) Pictures (1)
We have
$$X \hookrightarrow \mathbb{R}^3$$
.
Fix a direction in \mathbb{R}^3
After rotating/translating X and
refining pdy. structure, we may
assume:
1) X is above xy -plane
(a)
 $1)$ X is above xy -plane
(b)
 $1)$ X is above xy -plane
(c)
 $2)$ Every line
 $l(x,y)$
weets each face at most
once
 $3)$ $l(x,y)$ never runs along an
edge in X.
 2 Again, we way need to refine
the polyganal structure to obtain
this result.
 2 Again structure to obtain
 2 Again we result.
 2 Again structure to obtain
 3 Again st

5)	Orientations are well-defined 23	6)	Check adjacency condition.	30
	Spre (X', y') also has $l_{(x',y')} \cap F \neq \phi$		Spse F., F. share edge e	
	Push Lxy ~> Lx, y 2 things		Pick (*,1) st l(*,1) lies close to	
	can happen?		e and $l_{(x,y)} \cap F_0 \neq \emptyset$	
	1) don't cross edge		Push l(x,y) across e. Either	
	2) cross edge (S)		1) L slides over into Fi	
	If (1), then we don't lose any		2) L slides off Fo and Fi	
	intersections		=> sweep opposingly across e.	
	=> same sign		Which is what we originally wante	id I.
	If (2), then either			
	(a) cross one face into another Pict	ture: 1)	push	
	(b) push off two faces at once		5.5	
	=> parity of I will remain the			
	same.			
	=> well- defined, ic, osientation	2)		
	didn't depend on l(*,y).			

Theorem: For every group G and
$$n \ge 4$$
, there
exists an n-manifold M^n st
 $Tc_1(M^n) = G$
Theorem? (Whitney) Every n-manifold can
be embedded in \mathbb{R}^{2^n} .
Theorem? (Whitney) Every n-manifold can
be embedded in \mathbb{R}^{2^n} .
Theorem? (Whitney) Every n-manifold that can
be covered by a finite collectron of
n-dim's balls can be embedded in
 \mathbb{R}^n for $n \ge 4$
Remark: For $n = 2$, we proved the classification theorem
For $n = 3$, there is a classification theorem
but it is much more complicate.
 $r > Tt is intimately related to Knots$
 $M = \frac{(1)}{M \cup S^n} = \frac{(1)}{M \cap S} \mathbb{R}^{n^n}$
 $M = \frac{(1)}{M \cup S^n} \mathbb{R}^n$ \mathbb{R}^{n^n}
 $M = \frac{(1)}{M \cup S^n} \mathbb{R}^n$ \mathbb{R}^{n^n}

