Lecture \#9

Outline: 1) Metrics and Isometries
2) Geodesics
3) Gaussian Curvature
4) Gauss-Bonnet Theorem

Section 1: Metrics and Isometries

Definition: A surface is space that locally looks liter \mathbb{R}^{2} \rightarrow ie, Zoom in close it just looks liter a "piece of paper."

Definition: A metric on a surface Σ is a fond d that assigns to every pair of points $p, q \in \Sigma$ a real \#, $d(p, q)$.
This function satisfies

1) $d(p, q) \geqslant 0$ w/ equality only when $p=q$
2) $d(p, q)=d(q, p)$
3) $\quad d(p, r) \leqslant d(p, q)+d(q, r)$

Remark: Intuitively, $d(p, q)$ is the distance between p and q on Σ. So the above conditions translate to:

1) distance is always positive and is zero only when $p=q$
2) the distance from p to q is the distance from q to p
3) the distance from p to r is less than the distance from ρ to any intermediary point q plus the distance from r to the intermediary point q.

Notation: $\quad(\Sigma, d)=$ surface $\sum w /$ a choice of metric d.

Remark: We can obtain a metric d on any surface Σ as follows:

1) Embed Σ in \mathbb{R}^{3}
2) $d(p, q)=$ length of shortest path on Σ that connects p to q, where the length is measured wot the usual distance in \mathbb{R}^{N}.

Definition: $\quad\left(\Sigma_{0}, d_{0}\right)$ and $\left(\Sigma_{1}, d_{1}\right)$ are isometric if they are homeomorphic in such a way that preserves distance writ the metrics.
\leftrightarrow ie, take points that are distance C apart to points that are distance C apart.

Examples: 1) Inflating/ deflating the beach ball

$$
\Leftrightarrow \int_{\pi}^{a b}=1 \quad \leftrightarrow \text { Not isometry }
$$

2) Rotating beach ball

\hookrightarrow isometry
3) Slightly rolled piece of paper

s isometry

Remark: 1) We have moved beyond topology and into geometry.
2) Now our deformations need not only preserve shape, but also distances/angles.

Section 2: Geodesics

Definition: A geodesic on (Σ, d) is a curve that is locally distance minimizing.

Remark: 1) In geometry or even real life, it is very hard to find and work w/ curves that are everywhere the shortest path.
\leftrightarrow Best we can try is shortest path "locally", ie find shortest distance to the points we can actually see.
\hookrightarrow geodesics generalize "straight-lines" to surfaces.

Examples:
2)

3)

β, γ are all geodesics.

cylinder

Section 3: Gaussian Curvature

Remark: 1) The geometry of a space is concerned w/ how curved the space (when are geodesics not straight lines).
2) The topology/shape of a space doesn't care to some extent.
3) We will define Gaussian curvature, which will quantify this failure of surfaces to be flat.

Notation: We will assume (Σ, d) is a surface Σ that lives in \mathbb{R}^{3} and $d(p, q)$ is the length of the shortest path in Σ connecting p to q, where "length" is measured writ usual distance in \mathbb{R}^{3}.

Remark: All of the below defn/results generalize to orientable surfaces w/ more arbitrary metrics; however, we will just focus on the case above for ease/concreteness.

Definition: 1) Let C be a curve in \mathbb{R}^{2} and let p be a C' point on C. The osculating circle of C at p is the circle in \mathbb{R}^{2} that is tangent to C at p and hugs the curve most tightly.
2) The curvature of C at p is $1 / r$ where $r=$ radius of the osculating circle.

3)

\rightarrow radius of osculating circle is wo when C is a line. \Rightarrow curvature at p is $1 / \infty=0$.

Example: 1) Given a fan $f: \mathbb{R} \rightarrow \mathbb{R}$, we obtain a curve in \mathbb{R}^{2} by looking at the graph of f.
2) The radius of the osculating circle at $(x, f(x))$ is

$$
r=\frac{\left(1+f^{\prime}(x)^{2}\right)^{3 / 2}}{\left|f^{\prime \prime}(x)\right|}
$$

3) So the curvature is something seen by $2^{n d}$-order derivatives.
4) Roughly, as $\left|f^{\prime \prime}\right|$ increases so does curvature.

Definition: $\quad A_{n}$ outward normal vector at p is a direction in \mathbb{R}^{3} that is perpendicular to Σ at P and points outward from \sum

Picture:
1)

$\rightarrow "=$ outward normal vectors
$\rightarrow "=$ inward normal vectors
$" \rightarrow "=$ not normal vectors
2)

Definition: We define the Gaussian curvature of Σ at p as follows:

1) Fix an outward normal vector at p.
2) Consider a cross section Σ that contains P and the outward normal vector. \leftrightarrow ie, part of Σ that lies in a plane that contains p and outward normal vector.
\rightarrow this cross-section of Σ defines a curve C_{p} in plane

3) $\mathcal{X}\left(C_{p}\right)= \pm\left(\right.$ curvature of $\left.C_{p}\right)$
$\rightarrow+$ when center of circle lies above
p writ outward normal direction
\hookrightarrow - when center of circle lies below
p writ outward normal direction

Picture:
1)

2)

4) $K_{\max }(p)=$ maximum curvature among all possible cross -section curves
$K_{\min }(p)=$ minimum curvature among all possible cross -section curves
5) The curvature of Σ at p is

$$
K(p)=K_{\max }(p) \cdot K_{\min }(p) .
$$

Example: $\sum=$ sphere of radius r.

- Every cross-section is a great circle of radius r
\Rightarrow curvature of every cross-section is $-1 / r$
$\Rightarrow K=1 / r^{2}$ for every point p in $\Sigma=s^{2}$

Example: - Compute Gaussian curvature at center of hyperboloid

- $X_{\min }$ will be negative and correspond to le
- $X_{\max }$ will be positive and correspond to ae
$\Rightarrow K(p)<0$

Example: - Compute Gaussian curvature at center of plane

- Every cross section is a straight line

$$
\begin{aligned}
& \Rightarrow x_{\text {max }}=x_{\min }=0 \\
& \Rightarrow K(p)=0
\end{aligned}
$$

Theorem: If two surfaces are isometric, then they have the same Gaussian curvature.

Corollary: Any map of the earth must distort distances.

Proof: \quad 1) Plane is flat \Rightarrow Gaussian curvature $=0$
2) Sphere is curved, Gaussian curvature $=1$
3) The \Rightarrow not isometric
\Rightarrow no identification of points that preserves distance \longrightarrow Even locally!

Section 4: Gauss -Bonnet

Definition: A curvi-linear triangle on (Σ, d) is a triangle whose edges are geodesics.

Example: 1) A curvi-linear triangle in the plane
\rightarrow geodesics are straight lines
\hookrightarrow so just normal triangle
4 sum of interior angles is π.
2)

Sphere
\rightarrow geodesics are great circles

\rightarrow sum of interior angles is $>\pi$
3)

Center of hyperboloid

\rightarrow sum of interior angles is $<\pi$

Theorem: Let α, β, γ be the interior angles of a curvi-linear triangle Δ in (Σ, d). We have

$$
\alpha+\beta+\gamma-\pi=\int_{\Delta} k
$$

Remark: One can interpret $\int_{\Delta} k$ in two ways

1) K is a function on Σ.

So we can integrate it over the region Δ. $\int_{\Delta} K$ is the surface integral of K over Δ
2) $\int_{\Delta} k=\operatorname{area}(\Delta) \cdot($ average curvature over all $p \in \Delta$)

Example: curvi-linear triangle in the plane

$$
\rightarrow K \equiv 0
$$

So theorem says: $\alpha+\beta+\gamma=\pi$

Remark: Again $J_{工} K$ can be interpreted either as a surface integral or

$$
\int_{\Sigma} K=\operatorname{area}(\Sigma) \cdot(\text { average curvature over all } p \in \Sigma)
$$

Example: Let's prove the theorem when Σ is sphere of radius r.
\leadsto Above, K is always $1 / r^{2}$.
\Leftrightarrow Area of sphere of radius r is $4 \pi r^{2}$
$\rightarrow x(\Sigma)=2$
So

$$
\begin{aligned}
2 \pi & \cdot \chi(\Sigma) \\
& =4 \pi \\
& =4 \pi \cdot r^{2} / r^{2} \\
& =\operatorname{area}(\Sigma) \cdot \text { (average curvature over all } p \in \Sigma) \\
& =\int_{\Sigma} K
\end{aligned}
$$

as desired.

Proof: 1) Pick a triangulation of Σ composed of curvilinear triangles that have no edges/vertices glued together.
2) Let $\Delta_{1}, \ldots, \Delta_{n}$ be all the triangles w/ respective interior angles $\alpha_{i}, \beta_{i}, \gamma_{i}$
3) Note,

$$
\int_{\Sigma} K=\sum_{i=1}^{n} \int_{\Delta_{i}} K
$$

4) 2 (\#Edges) $=3$ (\# Faces)
"unglue" the triangulation as we've done before. use that no each triangle does not have any of its edges/vertices glued together.
5) $2 \pi \cdot(\#$ vertices $)=\sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}+\gamma_{i}\right)$
6)

$$
\begin{aligned}
\int_{\Sigma} K & =\sum_{i=1}^{n} \int_{\Delta_{i}} K \\
& =\sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}+\gamma_{i}-\pi\right) \\
& =\sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}+\gamma_{i}\right)-\pi \cdot F \\
& =2 \pi \cdot V-\pi \cdot F \\
& =2 \pi \cdot V-2 \pi E+3 \pi F-\pi \cdot F \\
& =2 \pi \cdot(V-E+F) \\
& =2 \pi \cdot X(\Sigma)
\end{aligned}
$$

The curvature of a triangle $\Delta w /$ interior angles α, β, γ in a surface Σ is

$$
K(\Delta)=\alpha+\beta+\gamma-\pi
$$

The curvature of a surface Σ wot a triangulation is the sum of the curvatures of each of the triangles in the triangulation.
We denote it by $K(X)$, where X is the triangulation of Σ.

Theorem: $\quad \sum_{i=0}^{n} K\left(\Delta_{i}\right)$

$$
K(\Sigma)=K(X)
$$

