Lecture#9 Outline® ") Metrics and Isometries 2) Geodesics 3) Gaussian Curvature 4) Gauss-Bonnet Theorem

Section 18 Metrics and Isometries
Definition 8 A surface is space that locally looks like
$$IR^2$$

ie, Zoom in close it just looks like a
piece of paper.
Definition8 A metric on a surface Σ is a fond that assigns
to every pair of points $p, q \in \Sigma$ a real $#, d(p,q)$.
This function satisfies
1) $d(p,q) \ge 0$ w/ equality any when $p=q$
2) $d(p,q) = d(q,p)$
3) $d(p,r) \le d(p,q) + d(q,r)$

Remark: We can obtain a metric d on any surface
$$\Xi$$
 as
follows:
) Embed Ξ in \mathbb{R}^3
2) $d(p,q) = \text{length of shortest path on }\Xi$
that connects p to q , where the length
is measured with the usual distance in \mathbb{R}^N .
Definition: (\mathbb{Z}_0 , do) and (Ξ_1 , do) are isometric if they are
homeomorphic in such a way that preserves
distance with the metrics.
ie, take points that are distance C apart to
points that are distance C apart.

Section 3° Gaussian Curvature

1) The geometry of a space is concerned w/ how curved Remark : the space (when are geodesics not straight lines). 2) The topology/shape of a space doesn't care to some extent. 3) We will define Gaussian curvature, which will quantify this failure of surfaces to be flat.

Notat:	0 1010 0	We	wil	las	sume	(Z	['q)	is	a s	sur fa	ece	Σ +	hat	lives
		in	\mathbb{R}^{3}	and	<u> Ц(р,</u>	g) i	is H	ne le	ngth	of I	he s	hort	est p	ath
		in	Σ	conne	ecting	p	to	2,	where	2 ``le	ngth	 15	mea	sured
		wr	t ı	rsual	912.	tance	în	1R ³ .						
Remar	K	All	of	the	below	s de	tn/i	esult.	s gei	neral	ize f	D 05;	entat	le
		Sur	faces	w/	more	ark	itrar	y m	etric	s; I	nowe	Jerj	we i	منال
		ju	st f	ocus	on	the	case	e abo	ve fo	r ed	se/	cuncr	etene	55.

Example:
1) Given a for
$$f: \mathbb{R} \to \mathbb{R}$$
, we obtain a curve in \mathbb{R}^2
by looking at the graph of f .
2) The radius of the osculating circle at $(x, f(x))$ is
 $Cx^2 \stackrel{\sim}{\to} 2C$
2) The radius of the osculating circle at $(x, f(x))$ is
 $f = \frac{(1 + f'(x)^2)^{3/2}}{|f''(x)|}$
3) So the curvature is something seen by 2^{nd} -order
derivatives.
4) Roughly, as $|f''|$ increases so does curvature.
1)

We define the Gaussian curvature of Z at p Definition : as follows : 1) Fix an outward normal vector at p. 2) Consider a cross section Z that contains p and the outward normal vector. ie, part of Z that lies in a plane that contains p and outward normal vector. 4> this cross-section of Z defines a curve Cp in plane

4)
$$\mathcal{X}_{max}(\rho) = maximum curvature among all possible
cross - section curves
 $\mathcal{X}_{min}(\rho) = minimum curvature among all possible
cross - section curves
5) The curvature of Σ at ρ is
 $\mathcal{K}(\rho) = \mathcal{X}_{max}(\rho) \cdot \mathcal{X}_{min}(\rho)$.$$$

Theorem 8	If two surfaces	are isometric, then they have the
	same Gaussian (curvature.
Corollary ⁸	Any map of the e	earth must distort distances.
Proof 8	1) Plane is flat	=> Gaussian curvature = O
	2) Sphere is curu	red, Gaussian curvature = 1
	3) Thm => not is	sometric
	=> vo id	entification of points that preserves
	dista	nce \longrightarrow Even locally!

Section 4: Gauss-Bonnet

Theorem:
Let
$$\alpha, \beta, \delta$$
 be the interior angles of a curvi-linear
triangle Δ in (Σ, d) . We have
 $\alpha + \beta + \delta - \pi = \int_{\Delta} K$
Remark:
One can interpret $\int_{\Delta} K$ in two ways
i) K is a function on Σ .
So we can integrate it over the region Δ .
 $\int_{\Delta} K$ is the surface integral of K over Δ
2) $\int_{\Delta} K = \operatorname{area}(\Delta) \cdot (\operatorname{average curvature over all } \rho \in \Delta)$

Example ⁸	Lets	prove	. the	Theo	rem	when	ξ	ìs	sph	ere o	f ra	dius	٢.
	دى	Abor	ve, k	l is	alu	says	レ	_2	•				
	لى	Are	a of	spher	e o	fra	dius	1	ìs	4 75	r²		
	ى	X (Z	z) =	2									
	So												
		275.2	(Σ)										
		= 2	 75										
		=	ᡃᡰ᠊᠋ᡘ᠂ᠬ	2 / 52									
		=	area (Ξ).	(ave	rage	CUFU	raties	e ove	r all	٥٤٦)	
		-	S, K			U							
	as	desired										ſ	7
			-										

Proof 8 1) Pick a triangulation of
$$\Sigma$$
 composed of
curvilinear triangles that have no edges/vertices
glued together.
2) Let $\Delta_1, ..., \Delta_n$ be all the triangles w'
respective interior angles α_i , β_i , γ_i
3) Note,
 $\int_{\Sigma} K = \sum_{i=1}^{n} \int_{\Delta_i} K$
4) $2(\# Edges) = 3(\# Faces)$
 w unglue" the triangulation as we've done before.
use that no each triangle does not have any
of its edges/vertices glued together.

5)
$$2\pi \cdot (\# \text{ Vertices}) = \sum_{i=1}^{n} (\alpha_i + \beta_i + \delta_i)$$

6) $\int_{\Sigma} \mathcal{K} = \sum_{i=1}^{n} \int_{\mathcal{A}_i} \mathcal{K}$
 $= \sum_{i=1}^{n} (\alpha_i + \beta_i + \delta_i) - \pi \cdot F$
 $= 2\pi \cdot \nabla - \pi \cdot F$
 $= 2\pi \cdot \nabla - 2\pi E + 3\pi F - \pi \cdot F$
 $= 2\pi \cdot (\nabla - E + F)$
 $= 2\pi \cdot \mathcal{K}(\Sigma)$

								•

The curvature of a triangle A w/ interior angles x, B, Y in a surface Z is $K(\Delta) = \alpha + \beta + \gamma - \pi$ The curvature of a surface Σ with a triangulation is the sum of the curvatures of each of the triangles in the triangulation. We denote it by K(X), where X is the triangulation of Σ .

