Le	ectu	re [#]	8										
Out	line®	り	Rei	view									
		2)	Son	ne cor	nplex	analy	rsis						
		3)	Fur	Idame	ntal	Theo	sem a	JA f	qebra	2			
		4)	Con	nplex	alge	ebraic	. va	rieti	es				
				l	J								

Lem	ma°	(در	rrve l	ifting) (fiven	٥.	clos	sed	CLIFU	e V	: 5'	>	S',	
		th	ere	exist	rs a	. fu	nctio	n	f : [0,2	π].	>	î R	st	
			i)	7(o) =	7(:	2777)	+ 21	t · r	for	r Som	e int	teger	n	
			2)	Y(t) =	(cos	(7(4	?))	sin (I	f (+)))		J		
		c	-> 1	, is	ca	lled.	a	l;f+	of '	X †	-][a				
Idea	2 0 2 0		f (t) =	Acci	ımula	ted	angle	e of	e rot	ation	۰f	v (. e)	
			mea	sure	d w) (espe	et.	to ((1,0)					
			د	· rot	ate	cloc	e ke w i	se a	ngle	dec	reas	es			
			لم	rot	tate	Cou	.ntes	cloc	J kwise	e ar	gle	incs	ease	2 S	

Defin	ition.	The degree of a closed curve $V: S' \rightarrow S'$ is	
		$de_{q}(\chi) = (f(2\pi) - f(0)) / 2\pi t$	
		where F is any lift of V to R.	
		in This did not depend on the choice of lift	
hema	rK 3	deg (8) = signed # of times 8 wraps around the circle	
Defini	tion :	Two closed curves $\mathcal{B}: S' \longrightarrow S'$ and $\mathcal{V}: S' \longrightarrow S'$ are	
		homotopic if there is a continuous map H: [0,1] × S' -> S'	
		satistying	
		1) $H(o,t) = B(t)$ H = $\int \cdots H(ur,t)$	
		2) $H(1,t) = Y(t)$ $\mathcal{B} = \mathcal{B} = \mathcal{B}$	

Remark ^s	Intuitively, H parameterizes how we can	
	push, compress, deform the image of B in S' to	
	the image of 8 in 5'.	
Theorem :	Two closed curves $\mathcal{B}: S' \to S'$ and $\mathcal{V}: S' \to S'$	
	are homotopic if and only if deg (B) = deg (8)	

Section 2: Some complex analysis • A real polynomial is a for f: IR -> IR of the form Definition 8 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x + a_n$ where each as is a real number. · When an = 0, we say the degree of f is deq(7) = n

• If
$$f(x_0) = 0$$
, then we say x_0 is a root of f .

Example:
$$f(x) = x^{77} - i7x^{66} + 42x - 26$$

is deg $(F) = 77$
is $f(i) = 0$
Remark: Not all real polynomials have real roots
 $f(x) = x^2 + 1$
If $f(x) = 0$, then $0 = x^2 + 1 = 7x^2 = -1$.
But the square of a real number is never negative
 $= 3 F$ has no roots
There just aren't enough real numbers.
If $i = \overline{b-1}$, then $F(i) = 0$ so F would have a root.
Need to make sense of such numbers.

		 				-	-								
Defin	ition ^s	The	com	plex	numb	ers	C	is th	re se	Ł					
			C	- {	(×,y) in	\mathbb{IR}^2	} =	{ × +	iy	l (×,	y) ;;	, IR	z }	
			us ie,	a	Сот	plex	nur	iber i	s a	for	mal	Siem	X +	iy	
			w	nere	x	and	У	are	real	nu	mber	5		•	
			L'N X	is is	cal	led	the	real	part	f.	χ.+	iy			
			un y	ı-	~		••	imagin	nar y	e	•	-			
			-					0							
Nota	tion ?	We	will	off	en	write	. :	2 =	* + *	ĩγ	\mathbf{t}	denot	re a	-	
		Co	mplex	nu	mber	•									

Rema	rK3		We	Can	add	Com	plex	num	bers							
				(x	0 + i	v.) -	۱ + (۲	. + iy	() =	(×.	, + ×נ) + ;	(y. 1	· yı)		
			 4	~ (18 +	/ 7i)	+ (•	-25 -	2i)	=	7+	5 i	,	/ .		
Rema	rKS		We	can	mi	ltiply	con	nplex	num	bers	by	regi	uirin	د م	- = - (
	۲,	C		(X.	+ i y _o) • (×	1+ ⁱ y	r.)				-•	Ļ			
		×		-	= X.	.×, -	+ ;(;	x., y,	\ + i	i (yo	×,) +	- (40 Y	L		
				=	= X	•×۱ -	- Yo>	/ ₁ + '	i (×.	γ. +	×,y•)				
		ዮ		ىم (2+i) · (7	- 7;)	=	14 -	14:+	7i -	7;²	= 21	- 7;		
Defini	tion °		The	vori	n of	٥	comp	lex	numb	er	× +	iy	is			
						\	iyl	= √	X ²	t y ²		•				

Remark: If
$$|u+iv| \neq 0$$
, then we can divide $x+iy$ by $u+iv$
 $x+iy$, $u-iy$
 $u+iv$, $u-iv$, $u-iv$
 $u+iv$, $u-iv$, $u-iv$
 $u+iv$, $u-iv$, $u-iv$, $u-iv$, $u-iv$, $u-iv$, $u^2 - ivv + ivv - i^2v^2$
 $= \frac{(x+iy) \cdot (u-iv)}{u^2 + v^2}$
 $= \frac{(x+iy) \cdot (u-iv)}{|u+iv|^2}$ (*)
We can make sense of (*) since we can just
scale the real and imaginary parts of numerator by
the denominator, which is a real number

Remark [®]	Just as i	we can ta	lk about fc	ns from IR	to R,
	we can .	talk about	t fons from	n C to C	•
Definition ⁸	A for 7	$: \mathbb{C} \longrightarrow \mathbb{C}$	is an as	signment of	a complex
	number z	to the	complex nur	nber $f(z)$.	
	^{L3} e.q.	f (z) =	$z^2 - 17$		
	J				

Remarks • One way to define the fan
$$e^{n}: \mathbb{R} \rightarrow \mathbb{R}$$
 is via Taylor's
series *
 $e^{n} = \frac{2^{n}}{n^{2}} \frac{x^{n}}{n!}$
• Terms of a Taylor's series gives successive approximations
to the actual fan.
 e^{n}
 $\sum_{n=0}^{n} (1)^{n}/n! = 1$
 $\sum_{n=0}^{n} (1)^{n}/n! = 1 + 1 = 2$
 $\sum_{n=0}^{2} (1)^{n}/n! = 1 + 1 + \frac{1}{2} = 2.5$
 $\sum_{n=0}^{3} (1)^{n}/n! = 1 + 1 + \frac{1}{2} + \frac{1}{6} = 2.666$
 $\sum_{n=0}^{4} (1)^{n}/n! = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} = 2.708333$

RemarK [°]	So a -	Taylor S	eries is a	pproximated	by a se	q. of polynomials.
	These T	aylor seri	es h <i>a</i> ve	to satisfy	some c	t <i>''</i> onvergence "
	propertie	s,ie, H	his infinite	e sum alu	ay needs	to converge to
	Something	o some (calculus is	required	to make	this rigorous.
	∽ ¶	e calcule	us also c	arries ove	r to the	complex case.
			ray tor seri	es wy Lon	npier nur	19675.
Definition [®]	The con	plex ex	ponential	fcn is H	he fon e	$e^{\mathbf{z}}: \mathbb{C} \to \mathbb{C}$
	given k	Ŷ	ن 2 ک	° 2 ⁿ		
			e" = 2	r		

															++	
Lem	na ⁸		e ^{il}	9 _	٥٥	(0) -	+ isin	(0)	fo	r Ø	a	real	numb	Ver.		
Proof	0		We	use	the	Tayl	or se	eries	for	sin (and	Cos	ond a	20 m yu	.te.	
				e ^{ið}	=	م چ ۵=۵	<u>(i E</u> n	<u>، (</u>			j · ·	. 2 C	=;(ī	2 j B	=i(-1) <i>P</i>
						√8	.2' i	^k 0 ^{2k}			%	.2Q+1 2	O ²²⁺¹			
						K=0	(2K) j		- 2 L	= 0	(2K	+ \) [_		
						×=0	(-1) ^K	θ ^{2κ} (κ) !	•	- 1	& Z e=0	(-1) (2) ² O ²² K + 1)	.+1 		
					4	Cos	(8)-	+ i S	in (O	·)					ס	
			Ŧ													
Co	ဂိ	e	`` =	-1												

4) Define
$$H : [0,1] \times S' \rightarrow S'$$
 via

$$H(S,t) = \frac{f(s \cdot e^{it})}{|f(s \cdot e^{it})|}$$
5) Notice that

$$H(0,t) = f(0)/|f(0)| = constant$$

$$H(1,t) = f(t)$$

$$\Longrightarrow f(t)$$

$$\Rightarrow f(t)$$

6) Notice that 2n + an-1 2n-1 + ... + a. Z + a. $s^{+}(z/s) \otimes (z^{+} + a_{n-1} + a_{n-1})$ $= 2^{n} + a_{n-1} \cdot 2^{n-1} \cdot S + a_{n-2} 2^{n-2} \cdot S^{2} + ... + a_{n-1} 2 S^{n-1} + a_{0} S^{n}$ So when s = 1, $S^{n} f(z/s) = f(z)$ So when s=0, $S^n f(z/s) = Z^n$ 7) Define G: [0,1] * S' - S' via $G(s,t) = \frac{s^n \cdot f(e^{it}/s)}{|s^n \cdot f(e^{it}/s)|}$

8]
$$G(o,t) = (e^{it})^n / [(e^{it})^n]$$

 $= (e^{int}) / [(e^{int})]$
 $= \frac{cos(nt) + isin(nt)}{|cos(nt) + isin(nt)|}$
 $= \frac{cos(nt) + isin(nt)}{|cos^2(nt) + isin(nt)|}$
 $= (cos(nt), sin(nt)) = \partial_n$
9) $G(1,t) = \partial(t)$
 $10) = deg(\partial) = n = deg(f)$
 $\Rightarrow O = deg(\partial) = n \neq O$, a contradiction.

Definition⁵ · Let
$$Z_{1},...,Z_{n}$$
 be a set of variables.
• A pronomial in Z_{1} is a polynomial of the form
 $a \cdot Z_{1}^{m}$
where a is a complex number and m is a non-neg.
integer.
• A polynomial in $Z_{1},...,Z_{n}$ is a finite product and
sum of monomials in the Z_{1} .
• $f(Z_{1},Z_{2}) = (Z_{1}^{*})Z_{2}^{*} + (T+Z_{1}^{*}) + (I6Z_{2}^{*})Z_{1}^{*})$.
• $f(Z_{1},Z_{2}) = X^{*} + Y^{*} + Z^{*}$
• $f(Z_{1},...,Z_{n}) = Z_{2} + Z_{3}$
• $C(Z_{1},...,Z_{n}) = Set of polynomials in $Z_{1},...,Z_{n}$
• Add, multiply polynomials => algebraic structure.$

Remarks Notice that a polynomial in
$$\Xi_1, ..., \Xi_n$$
 gives a fan
 $C^{n,...,n} \subset C$
Via evaluating F at $(\Xi_1, ..., \Xi_n)$ in \mathbb{C}^n .
Remark: The zero locus of F is the subset of \mathbb{C}^n given by
 $W(f) = \{(\Xi_1, ..., \Xi_n) \mid F(\Xi_1, ..., \Xi_n) = 0\}$
 $(F) = \{(\Xi_1, ..., \Xi_n) \mid F(\Xi_1, ..., \Xi_n) = 0\}$
 $(F) W'$ probability 1 , $W(f)$ for a random f will
be $(2n-2)$ -dim'l and, in fact, a $(2n-2)$ -manifold
 $(2n-2)$ -dim'l and, in fact, a $(2n-2)$ -manifold

Exam	ole ?	Let	t h	(₹)	be	م	degr	ee n	D	lyno	mial	•			
						1.1	ر	ې	1 1 - 1	- \		2 I	(7)	W(≠)	
		The	n w	יק /	ro ba b	ility	1,	+	(七,,	ť2) :	= 2;	2 - 1	(z_i)	المزمعا	
		be	م	Sus	face	(w/	som	e op	en en	ds)	w/	9	lonut	hole	5
		wh	ese									J			,
			•	q =	<u>n-</u> 2	<u> </u>		n =	oda	4					
			•	9 =	<u>n-</u>	2)	v =	ever	1					
				0)								
Delia	·T· 8	The	• • Jo			La J	1	¥	! <u>~</u>	И		4			
VETIN		1/10			ereic	120	by		12 -	ine s	skøse				
					I(1	-)	Ĺ	[Z,	,, 2	·~]					
		qiu	en b	У											
		ں سر	<u>م</u> ``	5_											3
		<u></u>	+) =	ζĴ	in (LZ	ر ر ۱	źn J] =]	F·h	for si	ome p	oly. h	ر ،

