Lecture \#7

Outline: 1) Review from last time
2) Brouwer's Fixed point theorem
3) Borsute-Ulam Theorem

Section 1: Review

Definition: A closed curve in $S^{\prime}=$ circle is a continuous ${ }^{(1)}$ map $\gamma: S^{\prime} \longrightarrow S^{\prime}$.
(1) We send every pt in S^{\prime} to a point in S^{\prime}.
(2) "Continuous" = we send points infintesimally close together in S^{\prime} to points infintesimally close together in S^{\prime}.
\leadsto We map S^{\prime} into $S^{\prime} w /$ out ripping or cutting it

Remark: Equivalently, a map $\gamma: S^{\prime} \longrightarrow S^{\prime}$ may be viewed as a continuous map

$$
\gamma:[0,2 \pi] \longrightarrow S^{\prime}
$$

$w /$

$$
\gamma(0)=\gamma(2 \pi)
$$

4 i.e., a map of a circle is just a map of an interval that connects up at its end points.
\leftrightarrow Intuitively, $\gamma: S^{\prime} \rightarrow S^{\prime}$ gives a way of wrapping/laying a string onto a circle such that you can tie together its ends.

Example: 1) $\gamma_{n}:[0,2 \pi] \rightarrow S^{\prime}$ given by

$$
\gamma(t)=(\cos (n t), \sin (n t))
$$

$\leadsto \gamma_{n}$ wraps n-times around the circle.
2) Crazier examples

Lemma: (Curve Lifting) Given a closed curve $\gamma: S^{\prime} \rightarrow S^{\prime}$, there exists a function $f:[0,2 \pi] \rightarrow \mathbb{R}$ st

1) $f(0)=f(2 \pi)+2 \pi \cdot n$ for some integer n
2) $\gamma(t)=(\cos (f(t)), \sin (f(t)))$
$\rightarrow f$ is called a lift of γ to \mathbb{R}.

Idea: $\quad f(t)=$ Accumulated angle of rotation of $\gamma(t)$ measured w/ respect to $(1,0)$
\leadsto rotate clockwise angle decreases
\rightarrow rotate counter clockwise angle increases

Example: 1) A lift of γ_{n} is given by $f(t)=n \cdot t$
2)

$$
\begin{aligned}
& \text { given by } f(t)=n \cdot t \\
& \operatorname{deg}(r)=\frac{f\left(2 \pi-\frac{f(0)}{2 \pi}=\frac{-2 \pi-0}{2 \pi}=-1\right.}{} \\
& \text { unrated angle. }
\end{aligned}
$$

Definition: The degree of a closed curve $\gamma: S^{\prime} \rightarrow S^{\prime}$ is

$$
\operatorname{deg}(\gamma)=(f(2 \pi)-f(0)) / 2 \pi
$$

where f is any lift of γ to \mathbb{R}.
4 This did not depend on the choice of lift

Remark: 1) Intuitively, $\operatorname{deg}(\gamma)=$ signed \# of times γ completely wraps around the circle
\hookrightarrow signed: wraps clockwise $=$ negative wrap wraps counter clockwise $=$ positive wrap

Example:

1) $\operatorname{deg}\left(\gamma_{n}\right)=n$
2) See above examples.

Definition: Two closed curves $\beta: S^{\prime} \rightarrow S^{\prime}$ and $\gamma: S^{\prime} \rightarrow S^{\prime}$ are homotopic if there is a continuous map $H:[0,1] \times S^{\prime} \longrightarrow S^{\prime}$ satisfying

1) $H(0, t)=\beta(t)$
2) $H(1, t)=\gamma(t)$

Remark: Equivalently, $H:[0,1] \times[0,2 \pi] \rightarrow S^{\prime} w /$

1) $H(0, t)=\beta(t)$
2) $H(1, t)=\gamma(t)$
3) $H(s, 0)=H(s, 2 \pi)$

Remark: 1) H parametrizes a family of curves that interpolates between β and γ.
2) Intuitively, H parametesizes how we can push, compress, deform the image of β in S^{\prime} to the image of γ in S^{\prime}.

Theorem: Two closed curves $\beta: s^{\prime} \rightarrow s^{\prime}$ and $\gamma: s^{\prime} \rightarrow s^{\prime}$ are homotopic if and only if $\operatorname{deg}(\beta)=\operatorname{deg}(\gamma)$

Section 2: Browner's Fixed Point Theorem

Definition: $\mathbb{D}=\left\{(x, y)\right.$ in $\left.\mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$ = unit diste in the plane

Theorem: Given a continuous map $f: \mathbb{D} \longrightarrow \mathbb{D}$, there exists a point (x, y) in \mathbb{D} suck that $f(x, y)=(x, y)$ \rightarrow ie, f has a fixed point.

Proof:

1) Suppose by way of contradiction that f does not have any fixed points.
2) Define a map $r: \mathbb{D} \rightarrow S^{\prime}$ as follows:
a) Consider the ray from $f(x, y)$ to (x, y)
b) follow the ray until you hit the boundary of the disk, which is a circle
c) Set $r(x, y)=$ point where ray meets the boundary \rightarrow Note, that to get suck a ray we needed $f(x, y) \neq(x, y)$
3) Note, r is continuous.

Picture:

4) Define $\gamma: S^{\prime} \rightarrow S^{\prime}$ as follows:

Take S^{\prime}, include it into boundary of \mathbb{D}, and then apply the map $r: \mathbb{D} \rightarrow S^{\prime}$.
5) Define $\beta: S^{\prime} \rightarrow S^{\prime}$ as follows:

Tale S^{\prime}, map it to $(0,0)$ in D, and then apply the map $r: \mathbb{D} \rightarrow S^{\prime}$.
6) By construction, $\operatorname{deg}(\gamma)=1$
7) β is a constant map, so $\operatorname{deg}(\beta)=0$
8) Define a homotopy $H:[0,1] \times S^{t} \longrightarrow S^{\prime}$ as follows:

$$
H(s, t)=r(s \cdot \cos (t), s \cdot \sin (t))
$$

9) $H(0, t)=r(0,0)=\beta(t)$
10) $H(1, t)=(\cos (t), \sin (t))=\gamma(t)$
11) $\Rightarrow \gamma$ is homotopic to β

$$
\Rightarrow \quad 1=\operatorname{deg}(\gamma)=\operatorname{deg}(\beta)=0
$$

a contradiction
12) $\Rightarrow f(x, y)=(x, y)$ for at least some (x, y) in \mathbb{D}.

Exercise: Given a continuous function $f:[0,1] \rightarrow[0,1]$, there exists $x \in[0,1]$ such that $f(x)=x$.

Hint: 1) You could use the intermediate value theorem
2) on try to replicate the proof of Brouwer's fixed point theorem but in one lower dimension.

Section 3: Borsuk-Ulam Theorem

Definition: $\cdot S^{2}=\left\{(x, y, z)\right.$ in $\left.\mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ $=$ unit sphere in \mathbb{R}^{3}

- The antipodal point of (x, y, z) in S^{2} is the point $(-x,-y,-z)$

Theorem: Given a continuous map $f: S^{2} \rightarrow \mathbb{R}^{2}$, there exists a point (x, y, z) in S^{2} such that

$$
f(x, y, z)=f(-x,-y,-z)
$$

Example: $\quad f: S^{2} \rightarrow \mathbb{R}^{2}$ via a location an earth is mapped to (temperature, humidity).
So the the \Rightarrow there exists antipodal locations on the earth w/ the same temperature and humidity.

Definition: The norm of a point (x, y) in \mathbb{R}^{2} is

$$
|(x, y)|=\sqrt{x^{2}+y^{2}}
$$

\rightarrow distance of (x, y) from the origin $(0,0)$.

Remark: If $(x, y) \neq(0,0)$, then

$$
\frac{(x, y)}{|(x, y)|}=\left(\frac{x}{|(x, y)|}, \frac{y}{|(x, y)|}\right)
$$

lies on $S^{1} \subset \mathbb{R}^{2}$
\rightarrow We've just scaled in (x, y) according to its distance from the origin so that its new distance from the origin is 1 , ie, it lies on S^{\prime}.

Proof: 1) Suppose by way of contradiction that

$$
f(x, y, z) \neq f(-x,-y,-z)
$$

for all (x, y, z) in S^{2}.
2) Define $g: S^{2} \rightarrow \mathbb{R}^{2}$ via

$$
\begin{aligned}
g(x, y, z)= & f(x, y, z)-f(-x,-y,-z) \\
& (\text { tams, hum })-(\text { temp, ham) } \\
\leftrightarrow \text { By }(1), g \neq & (0,0) .
\end{aligned}
$$

3) Define a map $r: S^{2} \rightarrow S^{\prime}$ as follows:

$$
r(x, y, z)=g(x, y, z) /|g(x, y, z)|
$$

4) Note, $r(x, y, z)=-r(-x,-y,-z)$
\rightarrow ie, r sends antipodal points on S^{2} to antipodal points on S^{\prime}.

$$
\begin{aligned}
&-r(-x,-y,-z) \\
&=\frac{-g(-x,-y,-z)}{|g(-x,-y,-z)|} \\
&=\frac{-(f(-x,-y,-z)-f(x, y, z))}{|f(-x,-y,-z)-f(x, y, z)|} \\
&=\frac{(f(x, y, z)-f(-x,-y,-z))}{|f(x, y, z)-f(-x,-y,-z)|} \\
&=r(x, y, z)
\end{aligned}
$$

4) Define a curve $\gamma:[0,2 \pi] \rightarrow S^{\prime}$ via

$$
\gamma(t)=r(\cos (t), \sin (t), 0)
$$

5) Notice that

$$
\begin{aligned}
\gamma(t+\pi) & =r(\cos (t+\pi), \sin (t+\pi), 0) \\
& =r(-\cos (t),-\sin (t), 0) \\
& =-r(\cos (t), \sin (t), 0) \\
& =-\gamma(t)
\end{aligned}
$$

6) $\Rightarrow \gamma(t+\pi)$ is always on the opposite side of the
 circle as $\gamma(t)$
7) Let f be a lift of γ
8) Let $\beta(t):=\gamma(t+\pi)$.
9) Note $f(t+\pi)$ is a lift of β.
10) $(6) \Rightarrow f(t)-f(t+\pi)=$ odd multiple of π, say $k \cdot \pi$
ii) $f(0)=f(\pi)+k \pi=f(2 \pi)+2 k \pi$
11) $\Rightarrow \operatorname{deg}(\gamma)=\frac{f(2 \pi)-f(0)}{2 \pi}=k \neq 0$
12) But γ is homotopic to a constant curve
\rightarrow shrink equator down to southpole and apply r. $\Rightarrow \operatorname{deg}(\gamma)=0$, a contradiction
13) $\Rightarrow f(x, y, z)=f(-x,-y,-z)$ for some (x, y, z)

Theorem: Let A_{0}, A_{1}, A_{2} be subsets of S^{2} that cover S^{2} $w /$ the condition that each point in S^{2} is contained in only one of these subsets. There exists a point (x, y, z) in S^{2} such that both (x, y, z) and $(-x,-y,-z)$ are contained in the same A_{i}.

Proof:

1) Define the function $d_{i}: S^{2} \rightarrow \mathbb{R}$ via

$$
\begin{aligned}
& d_{i}(x, y, z) \\
& =\min \left\{\operatorname{dist}\left((x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right) \mid\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \text { in } A_{i}\right\} \\
& =\quad \text { minimum distance needed to travel from } \\
& \quad(x, y, z) \text { to get into } A_{i}
\end{aligned}
$$

2) Note, if $d_{i}(x, y, z)=0$, then (x, y, z) is in A_{i}. if $d_{i}(x, y, z) \neq 0$, then (x, y, z) is not in A_{i}.
3) Define $f: S^{2} \rightarrow \mathbb{R}^{2}$ via

$$
f(x, y, z)=\left(d_{0}(x, y, z), d_{1}(x, y, z)\right)
$$

4) By Borsute-Ulam, there exists (x, y, z) such that

$$
\begin{aligned}
& f(x, y, z)=f(-x,-y,-z) \\
& \Rightarrow \quad d_{0}(x, y, z) \\
&=d_{0}(-x,-y,-z) \\
& d_{1}(x, y, z)=d_{1}(-x,-y,-z)
\end{aligned}
$$

5) If $d_{0}(x, y, z)=0$, then $d_{0}(-x,-y,-z)=0$
$\Rightarrow(x, y, z)$ and $(-x,-y,-z)$ are in A_{0}
If $d_{1}(x, y, z)=0$, then $d_{1}(-x,-y,-z)=0$
$\Rightarrow(x, y, z)$ and $(-x,-y,-z)$ are in A_{1}.
6) If $d_{0}(x, y, z) \neq 0, d_{1}(x, y, z) \neq 0$
\Rightarrow Neither (x, y, z) nor $(-x,-y,-z)$ is in A_{0} or A_{1}
7) $\Rightarrow(x, y, z)$ and $(-x,-y,-z)$ are in A_{2}.
