Le	ectu	re [±]	7										
Out	line [°]	り	Rev	view	from	last	+im	e					
		2)	Br	ouwe	r's F	Fixed	point	theo	rem				
		3)	Boi	-suk -	- Ula	m Th	leoren	4					
				1								 	

Section 1.8 Review
Definition: A closed curve in S' = circle is a continuous

$$Map \ Y: S' \rightarrow S'.$$

 $D We send every pt in S' to a point in S'.$
 $D We send every pt in S' to a point in S'.$
 $D We send every pt in S' to points infinitesimally close
together in S' to points infinitesimally close
together in S'.
 $Map B = Map B =$$

Lemma : (Curve Lifting) Given a closed curve
$$\mathcal{X}: \mathcal{S}' \to \mathcal{S}'$$
,
there exists a function $f: [0, 2\pi] \longrightarrow \mathbb{R}$ st
i) $f(0) = f(2\pi) + 2\pi \cdot n$ for some integer n
2) $\mathcal{X}(t) = (\cos(f(t)), \sin(f(t)))$
 $\therefore f$ is called a lift of \mathcal{X} to \mathbb{R} .
Idea: $f(t) = Accumulated$ angle of rotation of $\mathcal{X}(t)$
measured w / respect to (1,0)
 \therefore rotate clockwise angle decreases
 \Rightarrow rotate counter clockwise angle increases

Definition: Two closed curves
$$\beta: S' \rightarrow S'$$
 and $Y: S' \rightarrow S'$ are
homotopic if there is a continuous map $H: [0, 1] \times S' \rightarrow S'$
satisfying
i) $H(0,t) = \beta(t)$
2) $H(1,t) = Y(t)$
Remark: Equivalently, $H: [0,1] \times [0,2\pi] \rightarrow S'$ w/
i) $H(0,t) = \beta(t)$
3) $H(s,0) = H(s,2\pi)$

Rem	ar}{ ⁸	ı)	H f	arav	reter	izes	a fa	amily	°t	curv	es H	hat	inter	oolates	S
			beti	veen	ß	and	٢.						•		
		Z)	Int	uitive	ely_	H pa	rame	tesiz	es ha	າດ ທ	e ca	M			
			push	ر دە	mpres	ı s, de	eform	the	ima	qe of	B	in	S	ts	
			The	imao	r 1e of	ץ צ	in S	•	ر	J	/				
Theor	em °	Twe	o cl	osed	curve	25	B : ?	S' →	s'	an d	ያ	: S'	→	5'	
		are	. ho	mote	pic i	if an	d on	ly if	- de	eq (J ³) =	deq ((8)		
					l			/		J		J			

Proof S (1) Suppose by way of contradiction that
$$f$$
 does not
have any fixed points.
2) Define a map $r: D \rightarrow S'$ as follows S
a) Consider the ray from $f(x,y)$ to (x,y)
b) follow the ray until you hit the boundary
of the disk, which is a circle
(2) Set $r(x,y) = point$ where ray meets the boundary
(3) Note, that to get such a ray we needed
 $f(x,y) \neq (x,y)$
3) Note, r is continuous.

4) Define $\mathscr{V} : \mathscr{S}' \longrightarrow \mathscr{S}'$ as follows : Take S', include it into boundary of D, and then apply the map $r: \mathbb{D} \longrightarrow S'$. 5) Define B: S' -> S' as follows : Take S', map it to (0,0) in D, and then apply the map $r: \mathbb{D} \to S'$. 6) By construction, deg(8) = 1 7) B is a constant map, so deg (B) = 0

8) Define a homotopy
$$H: [0, 1] \times S' \longrightarrow S'$$
 as follows:
 $H(s, t) = r(s \cdot cos(t), s \cdot sin(t))$
9) $H(0, t) = r(0, 0) = \beta(t)$
10) $H(1, t) = (cos(t), sin(t)) = \gamma(t)$
11) => γ is homotopic to β
=> $1 = deg(\gamma) = deg(\beta) = 0$
a contradiction
12) => $f(x, \gamma) = (x, \gamma)$ for at least some (x, γ) in D.

Exer	દ હે ૯ કુ		Giv	ien a	. Co	ntinu	ious	funct	tion	f :	[0,1 ⁻	3 —	> [o	, רי	, Jhe	re
			ex	sts.	X	e [0,	[י]	such	tho	.t 7	(×)	= x	•			
Hint	0	ı)	You	L COU	ld us	e th	e int	erme	diat	e va	lue	Theor	em			
		2)	<u>or</u>	try	┢	repl	icate	Ihe	proo	र्न ज	Bro	rwer	's fi	eed	point	
			The	eoren	n b	ut i	in on	e lo	wer	dim	ensio	n.			-	

Section 3° Borsuk - Ulam Theorem

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$
Definition:

$$\begin{array}{c} S^{2} = \left\{ (x, y, z) \text{ in } \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1 \right\} \\ = & \\ & & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = \left\{ (x, y, z) \text{ in } \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1 \right\} \\ = & \\ \end{array}$$

$$\begin{array}{c} & & \\ & & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = \left\{ (x, y, z) \text{ in } \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1 \right\} \\ \times \\ \end{array}$$

$$\begin{array}{c} & & \\ & & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ \end{array}$$

$$\begin{array}{c} & & \\ S^{2} = & \\ \end{array}$$

$$\begin{array}{c} & & \\ \end{array}$$

f : :	S² →		ia a	location	an ear	th is ma	pped
to	(temper	ature, l	numidi	ty).			
So .	the thr	, => ł	here e	exists an	tipodal L	ocations c	n
the	ear th	w/ th	e sam	e temper	-ature a	nd humidi	+y.
							•
The	norm	of a	point	(x,y) :.	n R ² i	s	
		(×,y)	' ₌ √	$\chi^{1} + \gamma^{2}$			
43	distanc	e of (x,y) ·	from the	origin	(0,0).	
			•		J		
	F:	F: S ² → to (temper) So the thm the earth The norm 1 So distance	$f: S^{2} \rightarrow R^{2}$ vi to (temperature, I So the thm => t the earth w/ the me norm of a 1(x,y) 1 So distance of ($f: S^{2} \rightarrow R^{2} \text{ via a}$ $fo (\text{temperature}, \text{humidian})$ $So \text{the thm} => \text{there}$ $fhe earth w/ \text{the sam}$ $fhe norm of a point 1(x,y) 1 = -\sqrt{2}$ $\Rightarrow distance of (x,y) distance of (x,y) distance distance $	$f: S^{2} \rightarrow R^{2} via a location$ to (temperature, humidity). So the thm => there exists an the earth w/ the same temper The norm of a point (x,y): $\frac{1(x,y)}{1} = -\sqrt{x^{2} + y^{2}}$ $\Rightarrow \text{ distance of } (x,y) \text{ from the}$	$f: S^{2} \rightarrow R^{2} via a location an earsento (temperature, humidity).$ So the thm => there exists antipodal L the earth w/ the same temperature and the norm of a point (x,y) in R^{2} in $1(x,y) = \sqrt{x^{2} + y^{2}}$ \Rightarrow distance of (x,y) from the origin	$f: S^{2} \rightarrow R^{2} \text{ via a location an earth is matrix} $ to (temperature, humidity). So the thm => there exists antipodal locations e the earth w/ the same temperature and humidi The norm of a point (x,y) in R^{2} is $1(x,y) = \sqrt{x^{2} + y^{2}}$ \Rightarrow distance of (x,y) from the origin (0,0).

Proof :
) Suppose by way of contradiction that

$$f(x, y, z) \neq f(-x, -y, -z)$$

for all (x, y, z) in S².
2) Define $g: S^2 \rightarrow R^2$ via
 $g(x, y, z) = f(x, y, z) - f(-x, -y, -z)$
 $(terre, terre) - (terre, terre)$
 $(terre, terre) - (terre), terre)$
 $(terre), terre) - (terre), terre) - (terre), terre)$
 $(terre), terre) - (terre), terr$

4) Note,
$$r(x,y,z) = -r(-x, -y, -z)$$

is, $r(x,y,z) = -r(-x, -y, -z)$
points on S¹.
 $-r(-x, -y, -z)$
 $= -q(-x, -y, -z)$
 $|q(-x, -y, -z)|$
 $= -(f(-x, -y, -z) - f(x, y, z))$
 $|f(-x, -y, -z) - f(x, y, z)|$
 $= -(f(x, y, z) - f(-x, -y, -z))$
 $|f(x, y, z) - f(-x, -y, -z)|$
 $= r(x, y, z)$

4) Define a curve
$$\forall : [0, 2\pi] \rightarrow S^{1}$$
 via
 $\forall (t) = r(cos(t), sin(t), 0)$
5) Notice that
 $\forall (t + \pi) = r(cos(t + \pi), sin(t + \pi), 0)$
 $= r(-cos(t), -sin(t), 0)$
 $= -r(cos(t), sin(t), 0)$
 $= -\forall (t)$
6) => $\forall (t + \pi)$ is always on the opposite side of the
circle as $\forall (t)$

7) Let I be a lift of X ⁸⁾ Let $\mathcal{B}(t) := \mathcal{V}(t + \tau \tau)$. 9) Note f(t+π) is a lift of B. 10) (6) => $f(t) - f(t + \pi) = odd$ multiple of π , say $k \cdot \pi$ 11) $f(0) = f(\pi) + \kappa \pi = f(2\pi) + 2\kappa \pi$ 12) => deo $(\delta) = f(2\pi) - f(0) = k \neq 0$ 13) But V is homotopic to a constant curve " shrink equator down to southpole and apply r. => deg (8) = 0 a contradiction 14) => f(x, y, z) = f(-x, -y, -z) for some (x, y, z)

Theorem:
Let Ao, A, , Az be subsets of S² that cover S²
w/ the condition that each point in S² is contained
in only one of these subsets. There exists a point

$$(x,y,z)$$
 in S² such that both (x,y,z) and $(-x,-y,-z)$
are contained in the same A;
Proof 8 i) Define the function di: S² \rightarrow IR via
d; (x,y,z)
= min {dist ((x,y,z), (x',y',z')) | (x',y',z') in A; }
= min {dist ((x,y,z), (x',y',z')) | (x',y',z') in A; }
= minimum distance needed to travel from
 (x,y,z) to get into A;

2) Note, if $d_i(x,y,z) = 0$, then (x,y,z) is in Ai. if $d_i(x,y,z) \neq 0$, then (x,y,z) is not in A_i . 3) Define $f: S^2 \rightarrow \mathbb{R}^2$ via $f(x,y,z) = (d_{\bullet}(x,y,z), d_{\bullet}(x,y,z))$ 4) By Borsuk-Ulam, there exists (x, y, Z) such that f(x, y, z) = f(-x, -y, -z)=> $d_{o}(x, y, z) = d_{o}(-x, -y, -z)$ $d_1(x,y,z) = d_1(-x,-y,-z)$

5) If $d_{o}(x, y, z) = 0$, then $d_{o}(-x, -y, -z) = 0$ => (X, Y, Z) and (-x, -y, -Z) are in A. If $d_1(x, y, z) = 0$, then $d_1(-x, -y, -z) = 0$ => (x, y, z) and (-x, -y, -z) are in A_1 . 6) If $d_0(x,y,z) \neq 0$, $d_1(x,y,z) \neq 0$ => Neither (X, Y, Z) nor (-x, -y, -Z) is in Ao or A. 7) => (x, y, z) and (-x, -y, -z) are in A_2 .