Le	ectu	re [#]	6											
Out	ine°	り	Rei	view	from	last	tim	e						
		2)	Ma	.ps e	f S	' t o	S۲							
		3)	Lif	' ting	clos	ed c	urve	s to	IR					
		4)	The	Jeg	ree	of a	ma	p of	Sʻ	њ S	1			
		5)	Ho	u moto,	ру с	lasse	s of	1 CU F	ves					
		6)	Hon	no top	y in	variev	.ce	of c	legre	e				
				•					J					

Section 18 Review
Definition³
• A closed curve in a surface
$$\Sigma$$
 is a continuous
"map $\mathcal{Y} : \mathcal{S}' = \operatorname{circle} \longrightarrow \overline{\Sigma}$.
• We send every pt in \mathcal{S}' to a point in Σ .
• Continuous" = we send points infinitesimally close
together in \mathcal{S}' to points infinitesimally close
together in Σ .
• We map \mathcal{S}' into Σ w/ out ripping or cutting it

					-			
Theorem ⁸	Ever	y compac	t orien	table s	usface	is hom	eomorphic	c to a
	Con	nect sur	a ⊤°≠	± # T	- ² # S ²	for sov	ne # of	T ² 's.
Up Next:	ı)	Brouwers	s Fixed	Point T	neorem			
•	2)	Fundamen	ntal The	eorem o:	f Algeb	ra		

Section 2: Maps of S' to S'
Definition:

$$S' = \{(x,y) \text{ in } R^2 \mid x^2 + y^2 = 1\}$$

 $= unit \text{ circle in the plane}$
Definition:
A closed curve in S' = circle is a continuous
 $\bigcirc \text{map} \ \forall : S' \rightarrow S'.$
 $\bigcirc We \text{ send every } pt \text{ in } S' \text{ to a point in } \Sigma.$
 $\bigcirc We \text{ send every } pt \text{ in } S' \text{ to a point in } \Sigma.$
 $\bigcirc We \text{ send every } pt \text{ in } S' \text{ to a point in } \Sigma.$
 $\bigcirc We \text{ send every } pt \text{ in } S' \text{ to a point in } \Sigma.$
 $\bigcirc We \text{ send every } pt \text{ in } S' \text{ to a point in } \Sigma.$
 $\bigcirc We \text{ send every } pt \text{ in } S' \text{ to a point in } \Sigma.$
 $\bigcirc We \text{ send every } pt \text{ in } S' \text{ to points in finite simally close}$
 $\text{ together in } S' \text{ to points in finite simally close}$
 $\text{ together in } S'.$
 $\leftrightarrow We \text{ map } S' \text{ into } S' \text{ w/ out ripping or cutting it}$

kemark:	Equ	.ival	ently	, a	map	γ	: 21	>	S'	may	be	View	ped
	as	a	cont	innous	s may	2							
					۲ کل	[o, :	277]	<u> </u>	S'				
	w/												
	,					76	= (°	Y (2-	स)				
	L		e. a	ma	20 O	fa.	circ	le is	iu	st a	Maio	۰f	an
			interv	al H	P Lat	Corn e	cts		ل عد نا	-s en	م مو	ats.	
	i	» Т	·+.:+	suely.	X	: S'	> S				F	ſ	
							_1	J	l	a u	say 0	- 1	11 1
		U	scapp	ng / 11	rying '		STCI	ig o	n to	a c	ircie	Such	. That
			you	Can	tie	toget	hes i	ts e	ngs.				

Example: 1)
$$\forall_n : [0, 2\pi] \rightarrow S' \subseteq \mathbb{R}^2$$
 given by $(n = n+eger)$
 $\forall_n(t) = (cos(nt), sin(nt))$
 \neg What is \forall_0 ?
 $= constant$ $t \mapsto (cos(0, t), sn(0, t)) = (1, 0)$
 \Rightarrow What is \forall_{-1} ?
 $cos(to, t), sn(0, t)) = (1, 0)$
 \Rightarrow What is \forall_{-1} ?
 $cos(to, t), sn(0, t)) = (1, 0)$
 \Rightarrow What is \forall_{-1} ?
 \downarrow_{-2} \downarrow_{-2}
 \downarrow_{-2} \downarrow_{-2}
 \downarrow_{-2} \downarrow_{-2}
 \downarrow_{-2} \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 \downarrow_{-2}
 $\downarrow_$

2) Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be any function st
 $f(0) = f(2\pi) + 2\pi \cdot n$
for some n an integer.
 $\Im f: [0, 2\pi] \to S'$ given by
 $\Im f: (1) = (\cos(f(2\pi)), \sin(f(2\pi)))$
 $= (\cos(f(2\pi)), \sin(f(2\pi)))$
 $= (\cos(f(2\pi)), \sin(f(2\pi)))$
 $= \Im f(2\pi)$
 $= \Im f$ is a closed curve.

Seet	ion 3	: L	.iftin	<u>q cl</u>	osed	CUr	ves	to l'	<u>R_</u>							
			•	J												
Lem	ma°	(د	urve	_iftin	م) (, siven	٥	clos	sed	ديدرن	e V	: 5'	>	s' ,		
		th	ere	exis-	ts a	. fu	nctio	n	f :	[0,2	π]	>	I R	st		
			Ŋ	¥(0) =	7(2π)	+ 21	t • n	fo	s som	e int	leger	n		
			2)	Y(£) =	(605	s (76	t)),	sin (?	f(t)))		J			
			L> 7	, is	Ca	lled	a	l;f+	of	X 1	-ار م	ξ.				
Rema	rK:		(ب	f	need	not	be	unig	ue.							
			2)	If	f	is	a	ift .	of	γ,	then	7	+ 27	5 · K	is c	2
				1:6-	t of	8	fos	eve	ery	integ	er	k.				
			3)	The	se a	re H	e o	nly	othe	er li	fts	of '	٢.			

Proof:
1) Idea: "Unwind" the curve by noting the angle.
2) Notice that
$$\chi(t) = (\cos(f(t)), \sin(f(t)))$$

if and only if $f(t) = angle between $\chi(t)$ and $(1, 0)$
3) $f(t) = Accumulated angle of rotation of $\chi(t)$
measured w/ respect to $(1, 0)$
is rotate clockwise angle decreases
is rotate counter clockwise angle increases
is go around 5 times angle increases by
 $10\pi = 5 \cdot (2\pi r)$.
4) By construction and (2) , $\chi(t) = (\cos(f(t)), \sin(f(t)))$$$

T el'	2 ~ ~ ~	22	5)	The	only	part	in	defin	ing	τw	here	we	have	•		
20	(e1	ຸລ		any	c.h.	r ni <i>ce</i> .	is	pick	J	7(0)	L	hat	S	He		
	1	(\\	•)		1.		P	p.o	J		, 、					
				3721 1.[]	ting	ang	e ta	sm (· / •)	; 0	n y	TWD	CNC	1003		
				GITI	es b	y mi	~171910	25 ot	211	•						
				S۵	add	ing	mu(ti	ples	et.	275 -	to 7	qives	مال	1;f+	·S	
			6)	Not	ice	That	86) =	Y (21	ι ε).		J				
				۵2	tota	acc	umul	ated	ang	le m	rst f	e a	mul-	tiple	of	
				270	pl	ıs f	he s	start	ing a	znqle	•			•		
				s.	¥(o) =	£(2) +	_2π	- n	for	Some	e n.			
Exar	nple 8		ı)	А	lift	of	Y.	to	R	is	f(t) = v	ı∙t			
	U		2)	A	lift	of	Y¥	to	R	is	Ŧ.					

Remar X ^s	i)	For eac	h so in	{o,1]	H(s., +)	defines	a close	7
		curve	in S'.	•				
	2)	H para	meterizes	a famil	y of curi	ves that	interpolat	les
		between	B and	۲.				
	3)	Intuiti	vely, H p	arametesi	zes how w	e con		
		push, c	ompress	deform the	e image o	f B in	S' to	
		the ima	eqe of V	in S ¹ .	J			

Section 6:	Homoto	py invarieu	ce of a	degree			
				U			
Theorem :	Tues a	closed curve	es <i>J</i> B:	s' -> s'	and X	: S' →	s'
	are h	romotopic i	if and o	nly if a	leg (B) =	deg (X)	
					5		
Remark :	1) No	fice that re	otating th	e image e	st a curve	e in S ^L	defines
	a	continuou	s Family	of curve	es and the	us a hom	no to py
	=;	Any cur	ve is h	omotopic -	to a curv	e w/ d(a	5) = (1,0)
	2) If	we rota	ite V	by Ø,	then the	lift chan	jes
	Ьу	, + + 0			(J (2K) + O	r - 710) -	5)1~~~
	=>	deg(४) =	= deg o	f rotate	ed V.	= 4	2-10.

Claim 18	If $deg(B) = deg(V)$, then B is homotopic to V .	
Lemma °	Spse $\mathcal{V}(0) = (1,0)$. If $deg(\mathcal{V}) = n$, then \mathcal{V} is homotopic to \mathcal{V}_n .	
Proof :	1) Let f be a lift of $\chi = \chi(0) = 0$.	
	2) Define \widetilde{H} : $[0,1] \times [0,2\pi] \longrightarrow [R]$ by $\widetilde{H}(S+) = (1-S) \cdot \widetilde{F}(t) + S \cdot (n \cdot t)$	
	3) Define $H: [0,1] \times \{0,2\pi\} \longrightarrow S' L_{\gamma}$ H(s,t) = (cos(H(s,t)), sin(H(s,t)))	

4) We claim that H is a homotopy from
$$\mathcal{X}$$
 + \mathcal{X}_n .
5) Check H glues up at ends
i) $\widetilde{H}(s, o) = (1-s) \cdot f(o) = O$
ii) $\widetilde{H}(s, 2\pi) = (1-s) \cdot f(2\pi n) + s \cdot 2\pi n$
 $= (1-s) \cdot 2\pi \operatorname{deg}(\mathcal{X}) + s \cdot 2\pi n$
 $= 2\pi n$
iii) $\Rightarrow H(s, o) = (\cos(0), \sin(0))$
 $= (\cos(2\pi), \sin(2\pi))$
 $= H(s, 2\pi)$

6) Check H is a homotopy from X to Xn
7)
$$\tilde{H}(o,t) = f(t)$$

 $=> H(o,t) = (cos(f(t)), sin(f(t))) - X(t)$
8) $\tilde{H}(1,t) = n \cdot t$
 $=> H(1,t) = (cos(nt), sin(nt)) = Xn(t)$
 $os Coeinh$
Proof 2 1) Spse deg(X) = n = deg(B)
2) n = deg(X) = deg(rotated X -1 starting pt (1,0))
By lemma and fact that rotation is a homotopy,
 $X = rotated X = Xn$
 $y = rotated X = Xn$
 $y = rotated X = Xn$

Clair	n 23	0	-	τf	ß	i	s h	ono	bop i	c	to d	, ~	Hen	deq	(४) =	= dea	(ع)		
					•									J			, ,		
Theo	rem	0	(Hor	noto,	የሃ	l:ff	ing)	L	et	В	an	1 J	{	be a	close	d cu	rues.	
				in	S	۱	G	iven	a	h	omo	юру	Η:	[٥٫١] * [ο, 2π]	s۱	
				w/	H	1(o,t) =)	B(t)	an d	н((,- () =	· Y(+	<u>-</u>).				
				The	re	es	cists	a	Cor	nt:	ruous	s ma	L.p						
								ĥ	• {	وم	ı]×	[0, 27	「] —	→ R					
				th	at	Sc	atisf	ies											
					1)	H	(s,t)	2	(ي. ¢) دم	Í(3Æ)), s;	in (Ĥ	(s,t)))			
					2	.)	For	all	S		Ĥ(s,:	2π)	- मิ(s,o)	= 2	τn			
					3)	ĥ	is	uni	gue	e up	to	adding	a a	mult	^f iple a	र्ज 27	6.	
										τ									

Remo	rk :	I)	Prove	the	th	eoser	ı by	unk	υΓαρρ	inq"	in f	amilie	5.	
			ĨH (S,	,t)	= 1	ift e	f the	Cur	ve)	J H(s,-	t) u	-/ S	fixe	٩.
			4	This	6556	entially	, will	imply	(ı)	, (3)	in ·	theore	24	
		2)	Since	e H	pai	ame	rerize:	5 500	ne -	family	, of	curv	es,	as
			we	var	י א ל	5,	the .	accun	nulat	ed a	moun	+ .f	rota	ation
			con	l ju	mp	, (;+	is con	rtinua	us).					
		3)	For	any	lift		¥ (277) - 7	(•)	is a	mul	tiple	ef.	2TC _
			So	, H(s	, 217)	- H	(5,6)	ís	a n	mitip	e of	2 17	for	
			eac	h s	S.					•				
			But	;+	con' ' I	- jun	np as	S V	laries	, =>	must	be c	onsta	int.
						σ	•							

Proof:
1) Let H be homotopy from
$$\beta + \delta$$
.
2) Let H be a lift of H
3) $H(0,t)$ is a lift of β
 $\Rightarrow (\cos(H(0,t)), \sin(H(0,t))) = H(0,t) = \beta(t)$
4) $H(1,t)$ is a lift of γ
5) So $\deg(\beta) = (H(0,2\pi) - H(0,0))/2\pi$
 $= (H(1,2\pi) - H(1,0))/2\pi$
 $= \deg(\gamma)$.