Lecture \# 5

Outline: 1) Connected Sums
2) Curves in Surfaces and Orientability
3) Preliminaries on Graphs
4) 2-dimension Poincare Conjecture
5) Classification of Surfaces

Section 1: Review

Definition: Given two surfaces X and Y, the connect sum of X and Y, denoted $X \neq Y$, is obtained via

1) Remove an open diste from both X and Y to create two surfaces w/ "boundaries"
2) Glue the resulting boundaries together to create the new surface $X * Y$.

Example:

1) $T^{2} \# T^{2}=$ genus 2 surface
2) $S^{2} \# S^{2}=S^{2}$
3) $S^{2} \# T^{2}=T^{2}$
4) $\left.T^{2} \# \ldots \# T^{2}\right\} g$-times $=$ genus g surface

Proposition: $\quad x(X * Y)=\chi(X)+\chi(Y)-2$

Proof:

1) Recall, we can compute the Euler characteristic of a surface by using any polygonal cpo associated to it.
2) Pick poly coxes for X and Y that both have at least one face that is a 2 -polygon w/ unique edges and vertices.
3) Removing said 2 -polygons gives removal of disks from X and Y
4) To glue, we glue together the boundaries of these removed 2 -polygons.
5) This gluing gives poly cox for $X \neq Y$ w/

- $\operatorname{Vertices}(X \# Y)=V(X)+V(Y)-2$
- Edges $=E(X)+E(Y)-2$
- Faces $=F(X)+F(Y)-2$

6)

$$
\begin{aligned}
\chi(X \# y)= & V(X)+V(Y)-2 \\
& -(E(X)+E(y)-2) \\
& +F(X)+F(Y)-2 \\
= & X(X)+X(Y)-2
\end{aligned}
$$

Section 2: Curves in Surfaces and Orientability

Definition: - A closed curve in a surface Σ is a continuous $)_{\text {map }} \gamma: S^{\prime}=$ circle $\rightarrow \Sigma$.
(1) We send every pt in S^{\prime} to a point in Σ.
(2) "Continuous" = we send points infintesimally close together in S^{\prime} to points infintesimally close together in Σ.
\hookrightarrow We map S^{\prime} into $\Sigma w /$ out ripping or cutting it

- A curve is simple if the image of the curve in Σ does not cross/meet itself and the circle can be "pushed"/ deformed to look like a seq. of edges

Examples:

1) Constant curve
curve

2) Crossing curve
curves.

3) Simple closed curves
simple closed

4) Crazy curves

Definition: - A simple closed curve is 1-sided if a small thickening of the curve in \sum is a Möbius band.

- A simple closed curve is 2 -sided if a small thickening of the curve in \sum is a cylinder

Examples:
1)

L-sided curve
2)

2 - sided curve
3)

4) andre.

Remark: If there are 1 -sided curves on Σ, then we don't know what is up/down or in/out. We have no reference outward direction.

Definition: A surface is orientable if it has no 1 -sided curves.

Example:

1) Connect sums of tori $=$ orientable
2) Klein bottle is non-orientable

Definition: A surface is compact if it admits a polygonal complex structure w/ a finite \# of vertices, edges, and faces.

Theorem: Every compact orientable surface is homeomorphic to a connect sum $T^{2} \# \ldots \# T^{2} \# S^{2}$ for some \# of T^{2} 's.

Section 3: Preliminaries on Graphs

Definition: - A graph is a polygonal complex composed of edges.

- A graph is a tree if every pair of vertices is connected via a unique sequence of edges.
c A tree is a graph w/ no loops

Proposition: Let $\Gamma=$ connected graph. There exists a subcollection of edges of T that form a tree T that touches every vertex in T. T is called a spanning tree for T

Remark: A graph can have multiple spanning trees.

Proof:

1) Buildup \uparrow one edge at a time.

$$
\Gamma_{0} \xrightarrow[\text { edge }]{\text { Add }} \Gamma_{1} \xrightarrow[\text { edge }]{\text { Add }} \Gamma_{2} \xrightarrow[\text { edge }]{\text { Add }} \ldots \xrightarrow[\text { edge }]{\text { Add }} \Gamma_{n}=\Gamma
$$

2) We sequentially build spanning trees T_{i} for Γ_{i}.
3) $\Gamma_{0}=$ edge, $T_{0}=\Gamma_{0}$
4) $\Gamma_{0} \rightarrow \Gamma_{1}:$ either
a) A new vertex is added to Π_{0} to create Π_{1} \leftrightarrow create new "step"
b) No new vertex is \rightarrow create a loop
5) If $a) \Rightarrow \operatorname{set} T_{1}=T_{0} \cup$ new edge

If b) $\Rightarrow \operatorname{Set} T_{1}=T_{0}$
6) $\Gamma_{i} \rightarrow \zeta_{i+1}:$ either
a) A new vertex is added to Γ_{i} to create τ_{i+1}
b) No new vertex is
7) If a) $\Rightarrow \operatorname{set} T_{i+1}=T_{i} \cup$ new edge

If b) \Rightarrow Set $T_{i r 1}=T_{i}$
8) By construction, each T_{i} is a tree and touches every vertex of r_{i}. So repeated we obtain the result.

Lemma: Let $\Gamma=$ connected graph. We have

$$
x(\Gamma) \leq 1
$$

$w /$ equality iff r is a tree.

Proof:

1) If $r=$ tree, then we claim that $\chi(\Gamma)=1$
i) Build up Γ sequentially: $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \ldots, \Gamma_{n}=\Gamma$.
ii) Since Γ is a tree each time we add an edge, we also add another vertex

4 if not, we would conn. two vertices via at least 2 different seas of edges
iii) So

$$
\begin{aligned}
& r_{1}=\text { edge } \Rightarrow X\left(r_{1}\right)=2-1=1 \\
& r_{2}=V\left(r_{1}\right)-E\left(r_{1}\right)+1-1=1
\end{aligned}
$$

iv) Repeatedly, $\chi\left(\Gamma_{i+1}\right)=V\left(\Gamma_{i}\right)-E\left(\Gamma_{i}\right)+1-1=1$
$v) \Rightarrow \chi(r=$ tree $)=1$
2) Sase Γ is not necessarily a tree.

Let $T=$ spanning tree for T.

$$
\begin{aligned}
X(\Gamma) & =V(\Gamma)-E(\Gamma) \\
& =V(T)-E(T)-E(\text { not in } T) \\
& =X(T)-E(\text { not in } T) \\
& \leq 1
\end{aligned}
$$

3) Note, if $E(\operatorname{not}$ in $T)=0$, then $\Gamma=T$. $\Rightarrow X(\Gamma)=1$ if and only if $\Gamma=$ tree.

Theorem: Let $\Sigma=$ compact surface. Then $X(\Sigma) \leq 2$ and $X(\Sigma)=2$ if and only if Σ is homeomorphic to S^{2}.

Proof: \quad 1) Fix a polygonal cpx that gives Σ.
2) Let $T=$ spanning tree for the graph that is made up of the edges of X.
3) Define a graph \sim (that can be drawn on $X J$ via:
a) place a vertex in the center of each face of X
b) Connect two vertices via an edge for each edge in X that is not in T that their faces share

4)

$$
\begin{aligned}
x(\Sigma) & =x(x) \\
2^{\prime \prime} & =V(x)-E(x)+F(X) \\
& =V(T)-E(T)-E(\Gamma)+V(\Gamma) \\
& =x(T)^{\prime}+x(\Gamma) \\
& \leq 2
\end{aligned}
$$

\leftrightarrow This gives the first claim
5) Suse $x(\Sigma)=2$, then $x(r)=1$
6) $\Rightarrow \Gamma$ is a tree
7) Thicken T and Γ into weird looking disks, which are trees, until they fill out Σ.
8) $\Rightarrow \Sigma$ is gluing of two distes along their boundaries
9) $\Rightarrow \Sigma$ is homeomorphic to S^{2}.

Lemma: If a surface \sum has a 2 -sided curve that does
 not separate Σ into two pieces, then Σ is homeomorphic to $\Sigma^{\prime} \not \not T^{2}$ for some surface Σ^{\prime}.

Proof:

1) Let $\gamma=2$-sided curve in Σ.
2) Thicken γ to cylinder in Σ.
3) Note, $\Sigma^{\prime} \# T^{2}$ can also be obtained via:
i) Remove two disjoint disks from Σ^{\prime} '.
si) Connect these boundaries via gluing in a cylinder.
4) So removing γ from Σ and capping off the boundaries w/ distes undoes a connect sum.
5) Upshot, γ let's us realize E as comet sum w/ T^{2}.

Picture:

Proof:

1) Let $X=$ poly. cpu for Σ
2) Let T and T be defined as before.
3) If $\Gamma=$ tree, then as argued before $\Sigma=S^{2}$.
4) So we assume r is not a tree.
$\Rightarrow \Gamma$ has a loop $\gamma=2$-sided curve
5) We claim that γ does not separate Σ.
\rightarrow If not, $\Sigma-\gamma=\Sigma_{0} \cup \Sigma_{1}$ two separate pieces
4 If we remove the faces and edges that γ touches in X, then this divides X into poly. coxes X_{0} and X_{1} for Σ_{0} and Σ_{1}
\& γ doesn't meet T
$\Rightarrow T$ is completely contained in, say, X.
\leftrightarrow But T contains all the vertices of X.
$\Rightarrow X_{1}$ has no vertices and thus no polygons
$\Rightarrow X_{1}$ is empty, a contradiction.
6) By previous lemma, $\Sigma=\Sigma^{\prime} \# T^{2}$ for some surface Σ^{\prime}.

$$
x(x+y)=\frac{x(x)+x(y)}{-2}
$$

7) $\quad x\left(\Sigma^{\prime}\right)=x(\Sigma)+2$
8) \Rightarrow Repeating this setup w/ Σ replaced by Σ^{\prime} realizes $\Sigma^{\prime}=\Sigma^{\prime \prime \#} T^{2}$.
9) Eventually, this will terminate as $x\left(\Sigma^{\prime \prime}\right)=x\left(\Sigma^{\prime}\right)+2$, ie, eventually $X\left(\Sigma^{\prime \prime}\right)=2$ and thus $\Sigma^{\prime \prime}=S^{2}$.

Nextime: • ?? ?? ?

