Lecture \# 4

Outline: 1) Review from last time
2) Colorings of Maps Theorem
3) The connect sums of surfaces
4) Oriented surfaces and curves

Section 1: Review

Definition: A surface is space that locally looks like \mathbb{R}^{2} \rightarrow ie, zoom in close it just bootes liter a "piece of paper."

Definition: A polygonal complex is a space obtained by gluing together polygons, edges, and vertices, where by glue we mean that we identify edges $w /$ edges and vertices w/ vertices (could glue polygon to self)

Definition: Let $X=$ polygonal complex w/

- $V(x)=\#$ of vertices
- $E(x)=\#$ of edges
- $F(x)=\#$ of faces

The Euler characteristic of X is

$$
X(x)=V(x)-E(x)+F(x)
$$

Examples: 1) Random Polygonal Complex

$$
X(2)=11-14+3=0
$$

2) Torus 1

$$
x(\sqrt{\text { F}})=1-2+1=0
$$

3) Sphere

$$
x(\sqrt{x})=3-2+1=2
$$

Proposition: Let X and Y be polygonal complexes that are homeomorphic to the same surface. Then their Euler characteristics agree.

$$
\chi(X)=\chi(Y)
$$

Definition: The Euler characteristic of a surface Σ is the Euler characteristic of any polyogonal $c p x$ that is homeomsophic to Σ.

Remark: To compute $\chi(\Sigma)$, break Σ up into regions and count the $\#$ of vertices, edges, and faces.

Examples:

1) $x\left(S^{2}\right)=2$
2) $x\left(T^{2}\right)=0$
3) x (klein bottle) $=0$
4) x (genus g surface) $=2-2 g$.

Section 2: Colorings of Maps (4 Colors Theorem)

Question: - What is the minimum number of colors needed to color any map of the globe so that no two adjacent regions are colored the same color?

- What is the minimum number of colors needed to color any map of a surface so that no two adjacent regions are colored the same color?

Definition: A surface is compact if it admits a polygonal complex structure w/ a finite \# of vertices, edges, and faces.

4 Secretly, we needed to assume that our surfaces were compact when we defined their Euler characteristics.

Example: 1)
Sphere, torus, multiple donut holes

(2) \mathbb{R}^{2}

3) Infinite Ends

Definition: A geographic complex associated to a compact surface \sum is a polygonal complex that is homeomorphic to \sum and satisfies:

1) Every face does not meet itself
2) Any two faces that meet/share a unique edge
3) At least three faces meet at each vertex.

Remark: Intuitively, a geographic cox is a map of the surface that satisfies

1) A region cannot boarder itself
2) Two regions can only share one unique boarder
3) Vertices are where 3 or more regions meet

Example:

Geo
$c p^{x}$

Not geo op

1) A region cannot boarder itself
2) Two regions can only share one unique boarder
3) Vertices are where 3 or more regions meet

Definition: - A legal coloring of a geo. cpu. is an assignment of a color to each face st no two adjacent faces have the same color.

- The coloring number of a geo cpa X

$$
N(X)=\begin{aligned}
& \text { minimum } \# \text { of colors needed to } \\
& \text { produce a legal coloring of } X .
\end{aligned}
$$

- The coloring number of a compact surface Σ is $N(\Sigma)=\begin{aligned} & \text { minimum \# of colors needed to } \\ & \text { produce a legal coloring of all geo. }\end{aligned}$ cox associated to Σ.

Theorem:

$$
N(\Sigma) \leq \frac{7+\sqrt{49-24 \cdot x(\Sigma)}}{2}
$$

Corollary: Any geo. apt on Σ can be legally colored using

$$
\frac{7+\sqrt{49-24 \cdot x(\Sigma)}}{2}
$$

colors.

Example:

1) $\Sigma=S^{2} \Rightarrow$ need at most 4 colors
2) $\Sigma=T^{2} \Rightarrow$
3) $\Sigma=$ genus 4 surface \Rightarrow need at most 10 colors

Remark: To prove the theorem for $\Sigma=S^{2}$ is extremely difficult. We will prove it for $\chi(\Sigma) \leq 1$.

Notation: Let X be the geo. cpx associated to Σ that satisfies:

1) $N(x)=N(\Sigma)$
2) If Y is another geo. cp associated to Σ w/ $N(Y)=N(x)$, then $F(X) \leq F(Y)$.

Lemma 0: Every face of X has at least $N(X)-1$ edges.

Proof:

1) We suppose by way of contradiction that there exists a face in X strictly less than $N(X)-1$ edges.
2) Denote this face by f.
3) Shrink f and all of its edges down to a single vertex. This produces a new geo. cp X^{\prime}.

4) Since this proceedure does not produce any new edges any coloring of X gives rise to a coloring of X^{\prime}

5) So $N\left(x^{\prime}\right) \leq N(x)$
6) If $N\left(X^{\prime}\right)=N(X)$, then by assumption on X, $F(X) \leq F\left(X^{\prime}\right)=F(X)-1$
\Rightarrow we actually must have $N\left(X^{\prime}\right)<N(X)$
7) So we may color X^{\prime} w/ $N(X)-1$ colors.

But this allows us to color X w/ $N(X)-1$ colors.
Namely, we color X^{\prime}, then since f has less than $N(X)-1$ edges, it has at most $N(X)-2$ adjacent faces. So we con always pick on of the $N(x)-1$ colors to color f differently than all its adjacent faces. $\Rightarrow N(X) \leq N(x)-1$, a contradiction.
8) \Rightarrow Every face of X has at least $N(X)-1$ edges

Lemma 1: $\quad(N(X)-1) \cdot F(X) \leq 2 \cdot E(X)$

$$
N(x) \leq \frac{2 E}{F}+1
$$

Proof: 1) Every edge touches two unique faces.

$$
\Rightarrow \text { Average \# of edges per face is } 2 E(X) / F(X)
$$

2) By Lemma 0 , each face has at least $N(X)-1$ edges
\Rightarrow Average \# of edges per face $\geqslant N(x)-1$
3) Combining these inequalities,

$$
N(x)-1 \leq 2 E(x) / F(x)
$$

Lemma 2: $\quad 3 V(X) \leq 2 E(X)$

Proof: 1) Let $\tilde{X}=$ preglued collection of polygons that we glue together to produce X.
2) Note, $2 E(X)=E(\tilde{X})$
3) Since at least 3 faces meet at each vertex,

$$
3 v(x) \leq v(\bar{x})
$$

4) Since \tilde{X} is disjoint collection of polygons,

$$
E(\tilde{x})=V(\tilde{x})
$$

5) Combining,

$$
2 E(x)=E(\tilde{x})=v(\tilde{x}) \geqslant 3 v(x)
$$

Lemma 3: $\quad N(x)=N(\Sigma) \leqslant 7-6 \cdot x(\Sigma) / F(x)$

Proof:

$$
\begin{aligned}
N(\Sigma) & =N(X) \\
& \leq 1+2 E(X) / F(X) \quad \text { Lemma } \\
& \leq 1+(6 E(X)-6 V(X)) / F(x) \quad \text { Lemma 2 } \\
& =1+(-6 x(X)+6 F(x)) / F(x) \\
& =7-6 \cdot x(x) / F(x) \\
& =7-6 \cdot x(\Sigma) / F(X)
\end{aligned}
$$

$$
\begin{aligned}
& 6 X=6 V-6 E+6 F \\
& 6 E-6 V=6 F-x \cdot 6
\end{aligned}
$$

Proof: $\quad(x(\Sigma)=1)$:

$$
\begin{aligned}
N(\Sigma) & \leq 7-6 / F(x) \\
& \leq 6 \\
& =\frac{7+\sqrt{49-24 \cdot 1}}{2} \\
& =\frac{7+\sqrt{49-24 \cdot x(\Sigma)}}{2}
\end{aligned}
$$

Proof: $\quad(x(\Sigma) \leq 0)$

1) $\quad N(\Sigma)=N(x) \leq F(x)$
2)

$$
\begin{aligned}
N(\Sigma) & \leq 7-6 \cdot x(\Sigma) / F(x) \\
& \leq 7-6 \cdot x(\Sigma) / N(\Sigma)
\end{aligned}
$$

3) $\Rightarrow N(\Sigma)^{2}-7 N(\Sigma)+6 \cdot \chi(\Sigma) \leq 0$
4) This polynomial in $N(\Sigma)$ is upwards opening w/ at least one point on $N(\Sigma)$-axis.
5) \Rightarrow Largest $N(\Sigma)$ for which this holds is largest zero of poly.
6) $\Rightarrow N(\Sigma) \leq \frac{7+\sqrt{49-24 \cdot x(\Sigma)}}{2}$

Section: The connect sum of surfaces

Definition: Given two surfaces X and Y, the connect sum of X and Y, denoted $X \# Y$, is obtained via

1) Remove an open diste from both X and Y to create two surfaces w/ "boundaries"
2) Glue the resulting boundaries together to create the new surface $X \# Y$.

Example: 1) $T^{2} \# T^{2}=2$ holed surface $=$ genus 2 surface.
2) $S^{2} \# S^{2}=S^{2}$
3) $S^{2} \# T^{2}=T^{2}$
4) $\left.T^{2} \# \ldots \# T^{2}\right\} g$-times $=$ genus g surface.

Proposition: $\quad x(X \# Y)=x(X)+x(Y)-2$

Ex: 1) $X\left(T^{2} \# T^{2}\right)=X\left(T^{2}\right)+X\left(T^{2}\right)-2=0+0-2=-2$
2) $2=x\left(s^{2}\right)=x\left(s^{2}\right)+x\left(s^{2}\right)-2=2+2-2=2$.
3) \sim
4) $x\left(T^{c} \# . . \# T^{c}\right)=2-29$.

