

Definitions Let
$$X = polygonal complex w/$$

 $V(X) = # of vertices$
 $V(X) = # of edges$
 $F(X) = # of faces$
 $Let X = polygonal complex w/$
 $F(X) = # of edges$
 $F(X) = # of faces$
 $V(X) = F(X) + F(X)$
 $V(X) = V(X) - F(X) + F(X)$
 $V(X) = V(X) - F(X) + F(X)$

Proposition: Let X and Y be polygonal complexes that are homeomorphic
to the same surface. Then their Euler characteristics agree.
$$\chi(X) = \chi(Y)$$

Definition: The Euler characteristic of a surface Σ is the Euler
characteristic of any polygonal cpx that is homeomorphic
to Σ .
Remark: To compute $\chi(\Sigma)$, break Σ up into regions and count
the # of vertices, edges, and faces.

Section 2: Colorings of Maps (4 Colors Theorem) · What is the minimum number of colors needed to color Question . any map of the globe so that no two adjacent regions are colored the same color? · What is the minimum number of colors needed to color any map of a surface so that no two adjacent regions are colored the same color?

									-						
Definition	8	A	Sus	race	is	Com	pact	- 1	f :+	adı	n:ts	a	polyg	onal	
									łe #						
		an	d f	aces	•									5	
			4 Si	ecret	ι _γ ,	we	neede	ed t	o as	Sume	e th	at c	our s	usfa	æs
			L	vere	Com	pact	wh	en	we	defin	ed 1	he:r	Eul	er	
				char	actes	-isti	cs.								

		_			1		-			-	_		_	_	-
Defin	ition8	A	geog	raph	lc c	ompl	ex .	assoc	iated	s to	a	com	pact		
			- •					jonal							hic
								not		t its	elf				
								hat m		-			ve e	Je	
								face							
Rema	rK 🕯	Intu	itivel	Υ,	a g	logs	aphi	ر دو	× is	a	mag	o of	Hre	surfa	ice
			Sat												
								boad	der	itself	2				
								mly sl				e boa	.rder		
								, 3 ,							

Definition? • A legal coloring of a geo. cpx. is an assignment
of a color to each face st no two adjacent
faces have the same color.
• The coloring number of a geo cpx X
$$N(X) = {minimum \# of colors needed to}produce a legal coloring of X.• The coloring number of a compact surface Σ is
 $minimum \# of colors needed to$
 $N(\Sigma) = {produce a legal coloring of all geo. $P(\Sigma) = {produce a legal coloring of all geo.}$$$$

								1					
lemark ⁸	T.	prove	the	. the	20 rem	for	: ع	= S ²	is e	<i>xtren</i>	rely	d:ff:c	ult.
	We	้่เม	prov	ve it	for	X (7	I) 5	ι.			-		
			ſ										
Notation :	Let	X	be	the	qeo.	cpx	ass	o ci at	ed to	Σ	the	t	
		is fies			J								
		ı)	N()	x) =	N(2	-)							
		2)	If	Y	is	anoth	er qu	20. (cp× a	25500	iated	l to	Σ
									F(X				
							•						

a 08	Eve	ኖን	face	of	X h	as o	t lea	ast	N(X)) - (edg	es.		
											0			
8	ı)	We	Supp	ose b	y way	y of	contr	adict	ion •	that	there	ex	ist s	
	2)												0	
						-		edges	yon	n to	a si	ngle	verte	×.
												0		
			•				J	•						
		; i) 2)	s i) We a 2) Den 3) Shr	³ ¹) We supp a face ²) Denote 3) Shrink	1) We suppose b a face in 2) Denote Hhis 3) Shrink f a	³ ¹⁾ We suppose by way a face in X u ²⁾ Denote this face 3) Shrink f and al	1) We suppose by way of a face in X w/ st 2) Denote this face by 3) Shrink f and all of	¹⁾ We suppose by way of contr a face in X w/ strictly ²⁾ Denote this face by F. 3) Shrink F and all of its a	 i) We suppose by way of contradict a face in X w/ strictly les 2) Denote this face by F. 3) Shrink F and all of its edges 	¹⁾ We suppose by way of contradiction a face in X w/ strictly less the ²⁾ Denote this face by F. 3) Shrink F and all of its edges dow	¹⁾ We suppose by way of contradiction that a face in X w/ strictly less than A ²⁾ Denote this face by F.	¹⁾ We suppose by way of contradiction that there a face in X w/ strictly less than N(X)- ²⁾ Denote this face by F. ³⁾ Shrink F and all of its edges down to a sin	¹⁾ We suppose by way of contradiction that there ex a face in X w/ strictly less than N(X) - 1 e ²⁾ Denote this face by F. ³⁾ Shrink F and all of its edges down to a single	¹⁾ We suppose by way of contradiction fluat there exists a face in X w/ strictly less than N(X) - 1 edges. 2) Denote this face by F. 3) Shrink F and all of its edges down to a single verte

5) So
$$N(X') \leq N(X)$$

6) If $N(X') = N(X)$, then by assumption on X,
 $F(X) \leq F(X') = F(X) - 1$
 $=>$ we actually must have $N(X') \leq N(X)$
7) So we may color X' w/ $N(X) - 1$ colors.
But this allows us to color X w/ $N(X) - 1$ colors.
Namely, we color X', then since I has less than
 $N(X) - 1$ edges, it has at most $N(X) - 2$ adjacent
faces. So we can always pick on of the $N(X) - 1$
colors to color I differently than all its adjacent
faces. $=> N(X) \leq N(X) - 1$, a contradiction.
8) $=>$ Every face of X has at least $N(X) - 1$ edges

Lemma 1:
$$(N(X) - 1) \cdot F(X) \leq 2 \cdot E(X)$$

Proof 3: 1) Every edge touches two unique faces.
=> Average # of edges per face is $2E(X)/F(X)$
2) By Lemma O, each face has at least $N(X) - 1$
edges
=> Average # of edges per face > $N(X) - 1$
Proof 3: 1) Every edge touches two unique faces.
2) By Lemma O, each face has at least $N(X) - 1$
Proof 3: 1) Every edge touches two unique faces.
1) Every edge touches two unique faces.
2) By Lemma O, each face has at least $N(X) - 1$
Proof 3: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 3: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 4: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each face has at least $N(X) - 1$
Proof 5: 2) By Lemma O, each

Lemma 2°	$3V(X) \leq 2E(X)$ X X
	The second secon
Proof 8	1) Let \tilde{X} = preglued collection of polygons that we glue
	together to produce X.
	2) Note, $2E(X) = E(\tilde{X})$
	3) Since at least 3 faces meet at each vertex,
	$\exists V(X) \leq V(\bar{X})$
	4) Since X is disjoint collection of polygons,
	$E(\tilde{X}) = V(\tilde{X})$
	5) Combining,
	$2E(X) = E(\overline{X}) = V(\overline{X}) > 3V(X)$

Proof:	$(\chi(\Sigma) = 1$		
	N(Z)	≤ 7 - 6/F(X)	
		<u> </u>	
		$= 7 + \sqrt{49 - 24 \cdot 1}$	
		2	
		$= 7 + \sqrt{49 - 24 \cdot \chi(\Sigma)}$	
		2	П
Proof 8	(X(Z) ≤0		
	N (י	$(\Sigma) = N(X) \leq F(X)$	
	2) N	$(\Sigma) \leq 7 - G \cdot \chi(\Sigma) / F(X)$	
		$\leq 7 - 6 \cdot \chi(z) / N(z)$	

3) =>
$$N(\Sigma)^2 - 7 N(\Sigma) + 6 \cdot \chi(\Sigma) \pm 0$$

4) This polynomial in $N(\Sigma)$ is upwards opening w/ at least one point on $N(\Sigma)$ -axis.
5) => Largest $N(\Sigma)$ for which this holds is largest zero of poly.
6) => $N(\Sigma) \pm \frac{7 + \sqrt{49 - 24 \cdot \chi(\Sigma)}}{2}$

Section . The connect sum of surfaces Definition: Given two surfaces X and Y, the connect sum of X and Y, denoted X.#Y, is obtained via 1) Remove an open disk from both X and Y to create two surfaces w/ "boundaries" 2) Glue the resulting boundaries together to create the new surface $X \neq Y$.

				-	-	-										
Exan	ple :		(ب	T^2	# T	کر 	2	Vole	y 21	urfac	e =	9en	2 حس	Sur	face	•
						2 =						\mathcal{O}				
			3)	S² .	# T	.~ _	T^{2}	-								
			4)	τ	2 #	#	·	7	9-t;	mes	= 0	enu	s q	surf	ace.	
													U			
Propo	sition®		X	(X #	Y)	= X	(X)	+ X	(Y)	- 2						
·																
Ex:		U)	X (*	T²#	ר ר	= X	(72)	÷.	K(7'	-) - 2	2 =	0 1	- 0 -	-2:	= -2	
															ر = 2.	/
		3)	L													
		ધ)	z	(7'\$	₹£	τ ^e	- ر- ا	2	- 2	Q						
										, -						
				1	1	1				1		1				