

Propos	ition 8	Eve	^r y p	lanas	- dia	agra	n is	hor	neom	or phi	ic to	a.	surf	ace.	
						.									
Proof	•	•	Nee	d to	, sh	ow 🕇	hat	locall	y ab	out i	every	psin	t in	the	
			plan	ar	diaqi	ram	the	spac	e lo	oks	like	\mathbb{R}^2 .			
		•	We	have	ل 3	possi	oilitie	S							
				ı)	the	point	t is	a vi	ertex						
				2)	the	point	is	în a	n eda	7e					
				3)	The	point	iS	in V	he po	lygor					
		•	We	thak	abou	it ea	ch c	ase	•	.ე					

5) Sphere 2 6) 2 7) X (genus g surface) = 2-29 q

Rema	rcK [°]	It	a	ppear	s tha	t H	e E	uler	cha	racte	risti	cs o	f po	lygon	al	
									_				J	ر) ۱		
		Con	mple	xes	that	are	hom	eomo	rphic	to	the	Same	sur	face		
		alı	vays	ac	gree											
		e	-> T	hink	° Gi	ven -	two a	liffer	ent n	naps/	ways	of	brea	king e	up a	
					Su	rface	into	regio	ns ,	they	will	have	e Hr	e sar	ne	
					Eu	ıler	chard	U acteri	istic							
Propos	ition o	L	.et	χ	and	Чb	e po	lyqon	al co	mple	xes	that	are	homec	morph	ic
•			to.	he	same	sur f	ace.	Then	the	r Eu	ler a	chara	cter.	istics	agree	2.
						9/	(\mathbf{x})	7	(~)						U	
						X	(X)	= /	」(1)							
6																

Proof 8 · X and Y give two different ways of breaking our surface up into polygon-like regions · We can "overlap" X and Y on our surface, adding vertices where the edges of X intersect the edge of Y, to produce a new polygonal cpx for the surface. Call it Z.															
Surface up into polygon-like regions "We can "overlap" X and Y on our Surface, addin vertices where the edges of X intersect the edge of Y, to produce a new polygonal cpx for the Surface. Call it Z.	Pso	of 8	•	Х	and	Y	give	two	diffe	rent	ways	of	breat	cing a	our
"We can "overlap" X and Y on our surface, addin vertices where the edges of X intersect the edge of Y, to produce a new polygonal cpx for the surface. Call it Z.				Su	face	د	into	Dolva	on - lil	ke n	eoions	•		J	
vertices where the edges of X intersect the edge of Y, to produce a new polygonal cpx for the surface. Call it Z.			•	(L) e	COM	т * оле	clao''	1-7J ' X	and	Y			La c		11.
vertices where the edges of X intersect the edge of Y, to produce a new polygonal cpx for the surface. Call it Z.					L			<u>х</u>	1	<u>، د</u>		. 1		е, е	- 1
ot t , to produce a new polygonal cpx for the surface. Call it Z . u <				ver	TICES	wn	ere ,	rne 1	eoges	ot .	~	INTEC	Sect	+ne	esge
surface. Call if Z. iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii				ot	r,	+0 f	oro du	ce a	new	ې مەل	ygona	l cpr	(for	the	•
Image: Second				Su	rface	. Ca	ul if	Z.							
Image: Second															
Image: Second															

• Type 1 => 1 new edge, 1 face divided into Z

$$\chi(new) = V(old) - (E(old) + 1) + (F(old) + 1) = \chi(old)$$

• Type 2 => 1 new vertex, 1 edge divided into 2
• Type 3 => 1 new vertex, 1 new edge.

Defin	ition [®]	The	. Eu	ler a	harad	ctes is	tic a	of a	sur	face	Z	is	the	Eule	.r	
		ch		teris	tic	of a		موليرمو		c ov	Ha	f :s	how	8.0100.0	- phic	
			. 5			<u> </u>	<u>~</u>	75		Cr^	17.00		Kopt		- pmc	
		T	0 C													
						01	(-)					•				
Rem	arK°	•	76	Com	onte	·گ ((2)	، ط	eak	Σι	rp in	to re	egions	and	com	nt
			He	#	of	vertic	es,	edges	s ar	nd fa	ces.	(
		•	This	alle	ws u	s to	Anue	Jha	et u	e n		oric al	bei.			
			-				P					9.02	() () () () () () () () () ()			
_	, •		Ŋ	VI	(C ²)	- 1										
Exam	ples °		•,	~ (51	- 1	~									
			2)	X ((T²)	7	0									
			رت	X	(kle	in bo	ttle)	=	C							
			4)	x (genu	s 2	surf.	ace)	-	2 -	20					
					V						$\overline{)}$					

Proo	f:	•	We	use	თფ	of by	сол	tradi	ction	. S.	we	assun	ne k	s is	
			_							1 1					
			pla	mar	and	de	rive	a C	ontra	dictio	n. 7	hus	ouc		
			ass	ump	Tion W	ill be	ษต	ng a	nd t	Cs n	mst	be	von	olaua	r.
		_		ſ										-2	
		•	If	ks	is p	lanas	_ =>	de	termi	nes	ooly.	cpx	for	S ⁻ ,	
			Sa	iy)	۲.										
						_		_	_						
		•	By	the	Eule	er cl	nasac	teris	tic p	noposi	tim	fcom	toda	.y,	
			•		2 =	X (s	²)		•						
					=	V(X) - (ε(χ) + F	F(X)					
					×	$\Lambda(k$	-5)-	E(1	(L5) +	F (X)				
					=	5	- lo) +	F(X)					
			=`	> FI	(X) =	7									
					-										

. Note every face of X has at least 3 unique edges. If not, then the two vertices on the face are connected via 2 different edges (1111) But this can't happen for K5

• We claim that
$$3F \leq 2E$$

• We claim that $3F \leq 2E$
Let $\tilde{X} = denote the "preglued" collection of polygons
that we glue together to form X.
• Note \tilde{X} is itself a polygonal complex.
• Note
 $2E(X) = E(\tilde{X}) > 3F(\tilde{X}) = 3F(X)$
• Used #.
• $21 = 7 \cdot 3 = 3 \cdot F(X) \leq 2E(X) = 2E(K_S) = 20$
 $=> contradiction$$

Nex-	time	ı)	Coh	orings	°t M	laps '	Theor	em	(ય	Colo	rs 7	Theo	ren)		
		2)	Preli	minar	ies	for f	he C	lassi	f; cati	on of	surfo	ces.			

