Lecture # 2 Outline: ") Review from last time 2) A word on Mathematical rigor 3) Surfaces 4) Polygonal Complexes 5) The Euler characteristic

Section: Mathematical Rigor Need MATHEMATICAL means of studying Remarks shapes as oppose to a heuristical/visual means. (s There are spaces we can't visualize, but that we can nevertheless study. The square root of 2 is irrational. Claim : 4 $12 \neq P/q$ for some integers p and q (4)

								-		-			-		1	
Rem	arK ⁸	The	οιο	of qo	es v	ria	a t.	echni	que	called	pro	of by	(m	tradic	tion	
			I	J					T							
Rema	rrK8	•	A	staten	ment	is	eithe	er tr	uea	or fa	lse.					
		•	To	prove	true	e, ei	ther	prove	e th	at it	is	true	٥٢	not	false	•
		•	To	ριουί	е Ио	t fa	lse,	we	assi	ume f	hat.	the f	alse	state	ement	•
			hola	ls an	d f	пеп	unde	r th	is a	ssump	tion	$+_{ry}$	to .	show	that	
			Some	e thing	we	kno	ω (a pri	or:)	to k	pe t	ne.	to 1	pe fa	lse,	
			unc	J ber 2	his <i>d</i>	rssur	nption	•								
		•	We	Say	tho	it w	e a1	rieve	at	a cov	n trad	ictio	и.			
		•	U	o shot	is	dhat	٥٣٢	٥٢٠٩	inal	assum	ption	of .	false	hood	was	
			ine	correc	<u>↓. </u>	So 4	ne s	J tater	rent	must	ha	e be	zen -	true.		
\$																

	1										1					
Pro	of e	•	Spse	e by	way	əf	cont	radic	tion	that	12	= P	/q.			
		•	l We	may	٥	sume	م	= P1	Ри		7 = 9	9	e W	/ u	٥	
			Cov	nmon	prim	e fa	ı .ctor:	s (ie .	ρ/q	t t is in	· + low	est -	tern	ms)	
		•	=>	20	 } ² =	ρ^2				Î						
			=>	، م	t is	even					Ϋ́ s	guare	. of			
			=>	ا م	is	ever					J	odd i	s odd			
			=>	م م	is	divi	sible	by	պ	So 0	²= ५	• –				
			=>	Q`	- 2	. ~		1								
			=>	τ 9 ²	is	even										
			=>	+ 9	is	even										
		•	S.	t both	٥	and	a k	na.ve	a, c	pmmar	fact	r of	2			
			=)	con tro	r .dicti	ion	+ '									
	1	1	1	1		1	1	1			1					

Remar K ^e	0	why	, doe	es hi	gher	ma	th a	lway	, app	Dear	92	aliev	~?		
		,		C To begi	n, the mod	luli spaces .	$\overline{\mathcal{M}}(\sigma, x_0, x_\ell)$), furnished	with choic	ces of <mark>impli</mark>	cit atlases	\mathcal{A}			
				and cohere a flow cat fibration	ent orientation $\overline{\mathcal{M}}$ of $\overline{\mathcal{M}}$	ions \mathfrak{o} , can l ver $\mathcal{JH}(M)$	be assemble, Ω , λ). Fro	d over the m this data	Kan comple a, Pardon d	$\mathbf{x} \mathcal{JH}(M, \Omega)$ constructs a	$(2, \lambda)$ to define the definition of the defini	an			
				$\mathcal{J}\mathcal{H}(M,\Omega,\lambda) \to \mathcal{J}\mathcal{H}(M,\Omega,\lambda).$ Roughly speaking, a section of this fibration is a coherent choice of virtual fundamental chains for the above moduli spaces. Given such data, Pardon constructs a diagram											
				$\widetilde{\mathcal{JH}}(M,\Omega,\lambda)^{\mathrm{op}} \xrightarrow{\widetilde{\mathbb{H}}(\mathcal{M},\mathcal{A},\mathfrak{o})} \operatorname{N}_{\mathrm{dg}}(\mathrm{Ch}(\Lambda) \ ,$											
				$ \begin{array}{c} \sqrt{\pi} & \sqrt{\text{forget}} \\ \mathcal{JH}(M,\Omega,\lambda)^{\text{op}} & \xrightarrow{\mathbb{H}(\mathcal{M},\mathcal{A},\mathfrak{o})} & > H^0(\text{Ch}(\Lambda)) \end{array} \end{array} $											
				where N_{dg} ciated hor $\mathbb{H}(\mathcal{M}, \mathcal{A}, \mathfrak{o})$ the choice	$g(Ch(\Lambda))$ is notopy cate), one must of section.	the differer egory, see [I t choose a s	tial graded $Jur17$, Cons	nerve of C truction 1.3 . The funct	$h(\Lambda) \text{ and } H$ 3.1.6]. To c tor $\mathbb{H}(\mathcal{M}, \mathcal{A})$	$H^0(Ch(\Lambda_{\geq 0}))$ obtain the contrast of $(0, \mathfrak{o})$ does not) is the ass dashed arro ot depend o	oo- ow on			
		Jac	·gon ,	note	at:m	, te	chn;c	al J	efini [.]	tions	, eta	. al	low		
		ma	them	atici	ans	to	Con c	isely	exp	ress	and	rigo	rous	ly	
		fa	ve	idea.	s.			•	•			0			
		For	-th	is c	lass	<u>ا</u> ا	Edea	s/pi	cture	s 7	tec	hnica	l de	tails.	•
						•									
6															

Section & Polygonal Complexes

Section: Euler Characteristic
Definition: Let
$$X = polygonal$$
 complex $w/$
 $V(X) = #$ of vertices
 $E(X) = #$ of edges
 $F(X) = #$ of faces
The Euler characteristic of X is
 $\chi(X) = V(X) - E(X) + F(X)$

