Lecture #8
Review: i) Deh
$$C = \{X + iy \mid X, y \text{ real }, i = 1, i\}$$

i) FTA => Every poly a. has a root over C .
 $ax^{1} - bx - C$ $ax = \frac{-b \pm \sqrt{b^{1} + 4ac}}{2a}$
 $ax^{1} - bx - C$ $ax = \frac{-b \pm \sqrt{b^{1} + 4ac}}{2a}$
whenever $b^{2} - 4ac = 0 \Rightarrow C - root$.
Defn: A polynomial (over C or over R) is the variables
 $\exists i, ..., \exists n i = a \text{ formal sum of terms (assumete)}$
 uf the form $C \cdot \Xi_{i}^{a} \dots \Xi_{n}^{a}$; $a is is C \cdot at$.
 $box methe form $C \cdot \Xi_{i}^{a} \dots \Xi_{n}^{a}$; $a is is C \cdot at$.
 $box methe form $C \cdot \Xi_{i}^{a} \dots \Xi_{n}^{a}$; $a is c C \cdot at$.
 $box models are of the form $C \cdot \Xi_{i}^{a}, \dots, C \cdot \Xi_{n}^{a+1}$.
 $box models are of the form $C \cdot \Xi_{i}^{a}, \dots, C \cdot \Xi_{n}^{a+1}$.
 $box models - C \cdot Z_{i}^{a}, \dots, C \cdot \Xi_{n}^{a+1}$.
 $box models - C \cdot Z_{i}^{a}, \dots, C \cdot \Xi_{n}^{a+1}$.
 $n = 2 \quad Z \quad variable , X, y$
 $m = C \cdot X'y', C \cdot Y^{3}$,
 $n = 2 \quad Doly. \quad i) \quad X^{1} + y^{n} - 1$
 $ii) \quad X^{2}y' - 77x + 38y'$
 $n = 4 \quad \Xi_{i}, \Xi_{a}, \Xi_{b}, \Xi_{i}$
 z_{i}^{2}
 z_{i}^{2}
 z_{i}^{2}
 z_{i}^{2}
 z_{i}^{2}
 z_{i}^{2}
 $z_{i}^{2}$$$$$

Notn °	We	denste	the	set	of	all	pdy.	ih	r	van	a 4 bes
	5~	C [=	<u>د م</u>	zn]							
	- 7										
0 1	-11.	4	3	2							
Kn K.	+(~)	Ξ χ · ·		+ x -	-	= 64	eal pol.	y .			
		fan F	: R	>	IR,	Fo	(0) = -(2	Fcıj	=0	•
Rmk [:]	Poly.	in n	- va	riables.	٩	et.	a fen	•			
	•	- P .	PN								
		+ :		= (; *	׌		ے د				
		4/2		. 7			2				
	2,	+(~)	γ, ·			7	~				
		رم) 1	ə) =	. 0							
		7(1,6) =	+ /	0 =	= (
		4(i,	1)	= - i	+ 1	• 1	・(-1)	= _	2;	-	
Def. :	Given	7,		<u> </u>	·, -,	zn]	, we	Le	fne		
			5								7
		₩(∓)	= {	(, 1, , ,	-, W,	`) [Ψ(ω , .	, le	~~) ·	=0	J .
		9 (S		2			/_	. , 2			
	<u>ى</u>	F (2)	= 7	3 - 2	5 +	=	(()			
		₩⁄(=	F) =	2 w l	f	(w)	=0 }				
			2	219	-						
										1	I~
											R.
										1	

Ruk: index (p) is inde of the choice of curve as why? If two choices are bound topic =) degrees agree. A vector p on a surface E is a direction on the Deh: surf w/ a magnitude. A vector field on a surf I is a choice of vector at every point. -> index Ex: nder =0 s mdex = 1 Rock's the index of a crotical prant on the surf still makes sense. $index(p) = 2 = \mathcal{X}(S^2).$ Z Rnk 3 crit.on 5^2 $\sum_{n \in x} indexcp = 0 = \chi(T^2).$ m T²

Thr	. ?	(P.	ínco	(e -	lto _f t	- TC	m)										
			X(orit Sur	ted face) =	Sc	un	of	the	• >	dic	e5 (sf	the	Cr	·.;+
							ەم	ints	0	f .	ary	w	•N-	deg	ve	ctor	
							fi	ie ld.						U			
Cor	•	Ĭ.	~	con	·+	co	n b	the	r l	nair	on	q	bal		ul o	ut	
		æ	د	owli	ck*												
2000	f ;	S	025	5 y	wa		f c	ont c	o di	c <i>ti</i> a	. 4	hat	يدەد	л с	ould	, ,	
		-		vect	or ·	field	Ja	<u> </u>	2	ω/	no	C	ritica	۽ ل ,	point	s.	
		-	\$	X(S²)	:	\bigcirc										
		Į	Sut	X	(s²)	= 2											
			=>	്ന	trad	lict	on,										