Lecture *7

Outline: 1) Complex numbers
2) Complex Functions
3) Fund. Thy of Alg.
4) Alg. Sets

Deft: A real polynomial is a for $7: \mathbb{R} \rightarrow \mathbb{R}$ of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}
$$

where $a_{0}, . ., a_{n}$ are real \#s.

$$
\begin{aligned}
& \Leftrightarrow f(x)=x^{2}-2 x+1 \\
& \Leftrightarrow f(x)=42 \cdot x^{77}+x^{66}-3 x^{5}+2 .
\end{aligned}
$$

If $a_{n} \neq 0$, then we say that 7 has deg $=n$. we say x_{0} is a root of f if $f\left(x_{0}\right)=0$.

$$
\begin{aligned}
E x: & f(x)=x^{2}+1 \\
& 0=f\left(x_{0}\right)=x_{0}^{2}+1 \\
& \Rightarrow-1=x_{0}^{2}
\end{aligned}
$$

\Rightarrow square of a real $\#$ is neg.
\Rightarrow no such real \# x_{0} exists

Defer: A complex \# is a formal sum of the form $z=x+i y$ where
i) x, y are real \#
ii) i is a syoubol that satis fie $i^{2}=-1$

$$
\Leftrightarrow \quad i=\sqrt{-1}
$$

Propertiz: - Addition: $\left(x_{0}+i y_{0}\right)+\left(x_{1}+i y_{2}\right)=$

$$
=\left(x_{0}+x_{1}\right)+i\left(y_{0}+y_{1}\right) .
$$

- Multiple: $\left(x_{0}+i y_{0}\right)\left(x_{1}+i y_{1}\right)$

$$
\begin{aligned}
& =x_{0} x_{1}+i x_{0} y_{1}+i x_{1} y_{0}+i^{2} y_{0} y_{1} \\
& =\left(x_{0} x_{1}-y_{0} y_{1}\right)+\left(x_{0} y_{1}+x_{1} y_{0}\right) i
\end{aligned}
$$

- Complex Conjugate: $z=x+i y$

$$
\bar{z}=c p_{x} \operatorname{con} g \cdot f z<x-i y .
$$

Fact: $z=x+i y$, then $x^{2}+y^{2}=z \cdot \bar{z}$.

Proof: $\quad(x+i y)(x-i y)=x^{2}-i x y+i x y-i^{2} y^{2}$

$$
=x^{2}+y^{2} .
$$

\rightarrow real \#!

Def: Division: $\frac{x_{0}+i y_{1}}{x_{1}+i y_{1}} \cdot \frac{x_{1}-i y_{1}}{x_{1}-i y_{1}}=\frac{z_{0} \cdot \overline{z_{1}}}{z_{1} \cdot \bar{z}_{1}}$

Defu: $|z|^{2}=z \cdot \bar{z}=x^{2}+y^{2}$

Remark: We can identify \mathbb{R}^{2} w/ $\mathbb{C}=c \rho x$ numbers.

$$
(x, y) \longmapsto x+i y \text { in } C \text {. }
$$

Defer: A fin of \mathbb{C}-numbers is an assignment of each z in \mathbb{C} to somme $f(z)$ in \mathbb{C}.

$$
\begin{aligned}
& f: \mathbb{C} \rightarrow \mathbb{C} . \\
& \qquad f(z)=z^{2} . \\
& \Leftrightarrow f(1)=1 \\
& f(i)=i^{2}=-1 \\
& f(-1)=\left(-()^{2}=1\right. \\
& f(2+i)=3+4 i
\end{aligned}
$$

Deft: A complex polynomial is a for $7: \mathbb{C} \longrightarrow \mathbb{C}$ of the form

$$
f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z^{\prime}+a_{0}
$$

where a_{0}, \ldots, a_{n} are $c p x \# s$.

$$
\Leftrightarrow \quad f(z)=i z^{2}+(2+i) z-42 .
$$

Defn: $\quad e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$

Ex: $\quad 1=0$;

$$
\begin{aligned}
& 1+(-1)+1+(-1)+1+(-1)+\ldots \\
& (1-1)+(1-1)+(1-1)+(1-1)+\ldots=0 \\
& 1+(-1+1)+(-1+1)+(-1+1)+\ldots \\
& 1=(2)=0
\end{aligned}
$$

RnK:

$$
\frac{1+z+\frac{z^{2}}{2}+\cdots+\frac{z^{N}}{N!}}{\text { approximatio. }}+\frac{\text { other shuff }}{\text { error temm }}
$$

Theorem: $e^{i \theta}=\cos (\theta)+i \sin (\theta) . \quad(\theta$ is a ceal \#)

RmK: $\quad \mathbb{R}^{2} \longleftrightarrow \mathbb{C}$
$\left\{x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{2}$ is the set of $\mathbb{C} s t$

$$
|z|^{2}=1
$$

Tm: (Fund. Tho of $\mathrm{Alg}_{\mathrm{g}}$. - Gauss) Every poly has a root over the complex numbers.

Deft: 1 Two closed curves $\gamma_{0}: S^{\prime} \longrightarrow X, \gamma_{1}: s^{\prime} \rightarrow X$ are homotopic if
a) There exists a map of a cylinder

st top circle is mapped via γ.

$$
\rightarrow \quad x_{i}: S^{\prime} \rightarrow \text { Cylinder }
$$

b) γ_{0}, γ_{1} are homotopic it there exist a $\operatorname{map} H: S^{\prime} \times[0,1] \rightarrow X$ st

$$
\begin{aligned}
& H(s, 0)=\gamma_{0}(s) \\
& H(r, 1)=\gamma_{1}(s)
\end{aligned}
$$

Defm: $\quad \gamma: S^{\prime} \rightarrow C_{y l i n d e r, ~ t h e n ~} \operatorname{deg}(\gamma)=$ signed $\#$ of times γ wraps around the cylinder.

Thm: $\quad \operatorname{deg}\left(\gamma_{0}\right)=\operatorname{deg}\left(\gamma_{1}\right)$ iff γ_{0} is hamotopic to $\gamma_{\text {. }}$.

Proof: Spire by way of contradiction shat

$$
f(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

has no roots, ie, $f\left(Z_{0}\right) \neq 0$ for all z_{0} in \mathbb{C}. Define $\gamma(\theta)=f\left(e^{i \theta}\right) /\left|f\left(e^{i \theta}\right)\right|$

γ as a cure into cyluder by thickening unit circle in \mathbb{C}.
Claim: $\operatorname{deg}(\gamma)=0$.

Note $f\left(z_{0}|\neq 0 \Rightarrow| f() \mid. \neq 0\right.$.
deg (bottom curve on this cylinder) $=0$
\rightarrow map is to a pt \Rightarrow no wrapping.
Defuie $\gamma_{s}=s^{n} f\left(e^{i \theta} / s\right) /\left(s^{n} f\left(e^{i \theta} / s\right) \mid 0 \leq S \leq 1\right.$

$$
\begin{aligned}
& s^{n} f(z / s) \\
& =s^{n}\left(z^{n} / s^{n}+a_{n-1} z^{n-1} / s^{n-1}+\ldots+a_{1} z / s+a_{0}\right) \\
& =z^{n}+a_{n-1} z^{n-1} s+\ldots+a_{1} z s^{n-1}+s^{n} a_{0}=(A) \\
& s=1,(\not t)=f(z) \\
& s=0,(\ngtr)=z^{n} . \\
& \gamma_{1}=\gamma \\
& \gamma_{0}(\theta)=\left(e^{i \theta}\right)^{n}=e^{i n \theta}=\cos (n \theta)+i \sin (n \theta) .
\end{aligned}
$$

So as θ goes from 0 to $2 \pi, \gamma_{0}$ wraps n times around the cylinder.

$$
\operatorname{deg}\left(\gamma_{0}\right)=n=\operatorname{deg}\left(\gamma_{1}\right)=\operatorname{deg}(\gamma)=0 .
$$

So when $n>0 \Rightarrow$ cuntradictum

