Lecture \# 4

Recall: 1) Surfaces = locally looked like pieces of paper

2) Connect sums

$\rightarrow \infty$ many diff surfaces.
3) Euler characteristic
$-X\left(\right.$ poly. $\left.c_{x}\right)=V-E+F$
$4 x$ (surface) $=x$ (any poly. ap that tome to surf)
\leftrightarrow a way of breaker, up surface into polygons.

$$
\begin{array}{ll}
c \underset{a}{\sum_{i}^{2}+b} & \text { blown } \\
\Leftrightarrow x\left(T^{2}\right)=0 & x\left(T^{2} \neq T^{c}\right)=-2 \\
x\left(s^{2}\right)=2 & x(g \text { holes })=2-2 g
\end{array}
$$

Defn: Geographic cox is a poly cox
i) Faces do not meet themselves
as no country has bardor w/ self
ii) Faces share unique edges

- parr of countries has unique border \& two countries either border along a single edge or ore separate
iii) at ouch vertex at leard 3 faces meet as vertices are whore 3 countries come together.

DeAn: A legal coloring of a geog. acpt is coloring of facer st no two and. faces have the same color

$$
=\text { not ore }
$$

Detu: The coloring \# of a gey opt is the unin $\#$ of colors needed to prod. a legal coloring.

Defn: The coloring of a surface is the mm \# of coles needed to of any geog cpl times to surface
\rightarrow pick any map and you can color it we this of colors

Not: $\quad N(K=g e o g)=$ legal coloring

$$
N(X=\text { surf })=
$$

Thu:

$$
N(x) \leq \frac{7+\sqrt{49-24 x(x)}}{2}
$$

Notn: - $K=$ geo cpa on X w/ the following prop:
i) $N(k)=N(x)$
ii) K^{\prime} is another geo opt X st $N\left(H^{\prime}\right)=N(X)$
then $\quad F(K) \leq F\left(K^{\prime}\right)$

- $\tilde{K}=$ poly cpx that is the pre-gluing of K

$$
\begin{aligned}
& \substack{\text { iris apart } \\
\text { edges }} \\
& \frac{3+3+3}{3}=\frac{3+3}{3} \\
& \frac{3+5}{3}=\frac{11}{3}
\end{aligned}
$$

Lemma: $(N(K)-1) F(K) \leq 2 E(K)$

$$
\Leftrightarrow \quad N(k)-1 \leq 2 E / F \text {. }
$$

Proof: i) Average $\#$ of edges per face is $2 E / F$.

$$
\begin{aligned}
\text { Ave } & =E(\tilde{K}) / F(\tilde{K}) \\
& =E(\tilde{K}) / F(K) \\
& =2 E(K) / F(K)
\end{aligned}
$$

ii) To finish proof, we need to show that each face has at least $N(k)-1$ edges.

$$
\Rightarrow \quad \text { Ave } \geqslant(N(k)-1) / F(k)
$$

Assume by way of contradiction that there is a face w/ less than $N(k)-1$ edges.

Modity K to prod. a new geo ape. Shrink tace to a vertex.
Assp on geo $a p x \Rightarrow$ this shrilly gay y is infect geo opt. $=K^{\prime}$

$$
N\left(K^{\prime}\right) \leq N(K)
$$

But $F\left(K^{\prime}\right)<F(k)$
So by con of $K, N\left(K^{\prime}\right)<N(K)$.
Coloring of K^{\prime} gives a coloring of K via $N(K)-1$
colors.
Color K^{\prime} w/ $N(K)-1$ colors, but since A has $N-2$ sur faces, we com color $K w /$ $N(K)-1$ colors, contradiction.
$=\subset$ every face has at least N-1 edges.

$$
\text { Lemma: } \begin{aligned}
(N(K)-1) F(k) & \leq 2 E(K) \\
2=s N(K)-1 & \leq 2 E / F .
\end{aligned}
$$

Lemma: $3 V(k) \leqslant 2 E(k)$

Proof: Use $\tilde{K}=$ un-glued cpr

$$
3 V(k) \leqslant V(\widetilde{k})=E(\widetilde{k}) \leq 2 E(k)
$$

L collect of polygon

Lemma: $N(k)-1 \leq 6-6 X(x) / F(k)$

Proof: $(N-1) F \leq 2 E \leq 6 E-6 V$

$$
=-(6 V-6 E+6 F)+6 F
$$

$$
=-6(V-E+F)+6 F
$$

$$
\left\{\begin{array}{l}
3 V \leq 2 E \\
6 V \leq 4 E \\
0 \leq 4 E-6 V \\
E E \leq 6 E-6 V
\end{array}\right.
$$

$$
=-6 x(x)+6 F
$$

Proof: Of coloring the
i) $x(x)=1$

$$
N(x) \leq \frac{7+\sqrt{49-24}}{2}=\frac{7+5}{2}=6
$$

By lem,

$$
\begin{aligned}
& N-1 \leq 6-6 / F(k) \leq 5 \\
\Rightarrow & N(x) \leq 6
\end{aligned}
$$

ii) $x(x) \leq 0$

$$
\Leftrightarrow N-1 \leq 6-6 \overline{\chi(x)} / F(k) \leq 6-6 x(x) / N
$$

Malt by N

$$
\begin{aligned}
& N(N-1) \leq 6 N-6 x(x) \\
& N^{2}-N \leq 6 N-6 x(x) \\
& N^{2}-7 N+6 x(x) \leq 0
\end{aligned}
$$

\& poly in N

\rightarrow zeD of this poly gives an optimal solution to pollem Quad form

$$
N \leqslant \frac{7+\sqrt{49-24 x(x)}}{2}
$$

$$
\text { Exs } \quad \begin{aligned}
\quad & =T^{2}, x\left(T^{2}\right)=0 \\
& \Rightarrow N\left(T^{2}\right) \leq \frac{7+\sqrt{49-0}}{2} \leq 7
\end{aligned}
$$

Exer: Find a geo apx on T^{2} that requareas 7 colors to be legally colored

$$
\text { \& } \quad N\left(T^{\top}\right)=7
$$

Rumk: Planor dgmes are neve geog ape (ble taces edjes w/
 itsolf)

