Lecture \#3

Deft: A surface is a top. space that lock. looks like a prise of paper (Lop. 2-dim.)

$$
\begin{aligned}
& \rightarrow \Leftrightarrow=s^{2}=a(1,)_{a} \\
& \rightarrow \infty=T^{2}=\frac{b \vec{T}_{1, f}+b}{a} \\
& \text { c } a \text { I/2 } a=P^{2}=\text { real projective plane } \\
& \Leftrightarrow \underset{a}{\underset{a}{\underset{c}{s}} \underset{a}{s}}=K=K \text { leis bottle }
\end{aligned}
$$

c

Deft: A connect sum of two surfaces X_{1}, X_{2} is the surf X_{3} obtained ar follows

1) reval disks from X_{1} and X_{2}

Combinatinal models for surfaces \rightarrow planar dom
we denote this by $X_{0}=X_{1} \# X_{2}$
\Leftrightarrow this constraction is ind of the dishes that we rewove.

$$
\text { Ex: i) } \begin{aligned}
T^{2} \# T^{2} & =\text { intertabe } w 2 \text { hales } \\
& =\omega \infty
\end{aligned}
$$

ii) $S^{2} \nRightarrow S^{2}=S^{2}$

$$
=\cdots
$$

iii) $X \# S^{2}=X$

Rok: Connect sum can be realized on level it planar dons

Ex: $\quad T^{2} \# T^{2}$

Rok: Each surf has ∞ \# .f pay cuter that are homes to surface. We call these poly structured/ triangulations.

Thu: Every surface admits a decomp ito a poly px.

Proof:

Deft: The Euler characteristic of a poly px K is

$$
X(K)=V(K)-E(K)+F(k)
$$

$$
\begin{aligned}
& V(k)=\# \text { vert. of } k \\
& E(k)=\# \text { edge } k k \\
& F(k)=\text {. tacet. . }
\end{aligned}
$$

Ex: i) $x(\rho t)=1$
ii) $x(\underset{\sim}{4}$ 且 $)=12-12+1=1$
iii)

$$
\begin{aligned}
& x\left(\frac{b \sqrt{\frac{1}{2}} f_{b}}{\frac{a}{a}}\right)=1-2+1=0 \\
& x(\sqrt{20})
\end{aligned}
$$

iv) $x\left(a f f_{0}^{i}\right)=2-1+1=2$
v) $x\left(\frac{b \underset{a}{\overrightarrow{(C)}, f b}}{a}\right)=1-2+1=0$

Defu: $X(X)$, where $X=$ surf, equal to $X(t e)$ when K is any poly. structure homes to X.

Thu: $X(X)$ is ind. of the choice of He.

Proof: Let K, K^{\prime} be any two poly ope tomes to X. Over lap K w/ k^{\prime} to obtain a new poly op x $K^{\prime \prime}$

So to prove the claim it suit to show $x\left(1 e^{\prime \prime}\right)=x(k)$. We obtain $K^{\prime \prime}$ from K via applym, the billowing or in a seq.
1)

2)

\leadsto

3)

~)

So we just need that these steps

1) x (LHS (1)) $=1, \quad x$ (RHS (1) $)=1$

- new uxt cancels new edge.

2) same logic applies
3) dividia, face cancels the now edge creation
\Rightarrow these steps den't change \mathbb{X}.

$$
\Rightarrow x\left(k^{\prime \prime}\right)=x(k)
$$

Thu: S^{2} is not homeomorphic to τ^{2}.

Proof: If S^{2} is homed to T^{2}, then poly oft fo S^{2} gives a poly c px for T^{2} w/ out changing $\# U, E, F$.

$$
\Rightarrow 2=x\left(S^{2}\right)=x\left(T^{2}\right)=0
$$

Contradiction \Rightarrow original assumptia must have Lean wrong. $\Rightarrow S^{2} \not \approx T^{2}$.

Fact: $\quad X\left(X_{1} \# X_{2}\right)=x\left(X_{1}\right)+\chi\left(X_{2}\right)-2$
$E_{x}: \quad$ i) $S^{2} \# s^{2}=S^{2}$

$$
\begin{aligned}
\chi\left(s^{2} \# s^{2}\right) & =x\left(s^{2}\right)+\chi\left(s^{2}\right)-2 \\
& =2+2-2 \\
& =2 .
\end{aligned}
$$

Proof: Pick poly apr for X_{1}, X_{2} that have

in the triagulation

So to "remove" ow disk from $x_{1},\left(\operatorname{res} x_{2}\right)$, we remove the tace of thus bigon.

We bison along the boundaries to slue up X_{1} w/ X_{2} to get $X_{1} \not X_{2}$.

$$
\begin{aligned}
& X\left(x_{1} \# x_{2}\right) \\
& V\left(x_{1} \notin x_{2}\right)=V\left(x_{1}\right)+V\left(x_{2}\right)-2 \\
& E\left(X_{1} \# x_{2}\right)=E\left(x_{1}\right)+E\left(x_{2}\right)-2 \\
& F\left(x_{1} \# x_{2}\right)=F\left(x_{1}\right)-1+F\left(x_{2}\right)-1 \\
&=F\left(x_{1}\right)+F\left(x_{2}\right)-2 \\
& \Rightarrow X\left(x_{1} \# x_{2}\right)=X\left(x_{1}\right)+X\left(x_{2}\right)-2
\end{aligned}
$$

$$
\text { Ex: } x\left(\frac{\infty}{\infty}\right)=x\left(T^{2}\right)+x\left(T^{2}\right)-2
$$

$$
=0+0-2
$$

$$
=-2
$$

$$
\begin{aligned}
x(\sqrt[\infty]{\infty}) & =x(\sqrt{\infty})+x\left(\tau^{2}\right)-2 \\
& =-2+0-2 \\
& =-4
\end{aligned}
$$

Deft: A graph is planar if it can be realized as the edges of a poly. apt on a sphere.

Defn: $K_{5}=$ graph we 5 verticar and each par on vert ir compacted via unique edge.

$$
\begin{aligned}
& V\left(K_{5}\right)=5 \\
& E\left(K_{5}\right)=10
\end{aligned}
$$

Claim: K_{s} is not planar.

Proof: Sase by way of contra. that KC s $_{5}$ is planar \Rightarrow realize K_{5} as edges on sphere.

$$
\begin{aligned}
& 2=\chi\left(S^{2}\right) \\
&=V\left(K_{5}\right)-E\left(K_{5}\right)+F \\
&=5-10+F
\end{aligned}
$$

Notice that each faces has at least 3 edges. \rightarrow if not, then we see bigon

$\Rightarrow V$ and w acre conn. via nom than we edge whoop doesn't occw

$$
\Rightarrow \quad 21=3 F \leq 2 E=20
$$

$K=c p x$ on s^{2}, \tilde{K} denote the cox be fore we glued to obtam K.

$$
\begin{aligned}
E(\tilde{K}) & =2 E(K) \\
F(\hat{K}) & =F(K) \\
3 F(\hat{K}) & \leq E(\hat{K}) \\
\Rightarrow 21=7 \cdot 3 & \leq E(\hat{K})=2 E(K)=20
\end{aligned}
$$

\Rightarrow contradiction!
\Rightarrow original ass, wrong. ie \mathbb{R}_{5} is not plama). \square.

$$
\begin{aligned}
& 2.4 .25: X(g \text { holes })=2-2 g \\
& 2.4 .26
\end{aligned}
$$

construct planar dom tor a intertube w/g-holes.

$$
x\left(x \not T^{2}\right)=x(x)+x\left(T^{20}\right)-2
$$

$$
2-2 g
$$

Coloring Then for mays.

$$
\begin{aligned}
& \text { \# colors to any map on } s^{2}=4 \\
& \text { \# colors } \leq \frac{7+\sqrt{49-24 x(x)}}{2}
\end{aligned}
$$

