Lecture # 3

iv) $\chi\left(a \left(\frac{1}{2} \right)^{a} \right) = 2 - 1 + 1 = 2$ $\frac{\mathcal{V}}{\mathcal{X}}\left(\mathbf{b}\right) = \left(-2 + \right) = 0$ Define $\mathcal{K}(\mathcal{X})$, where $\mathcal{X} = surf, equal to \mathcal{K}(\mathcal{H})$ when K is any poly. structure homeo to X. Thin 3 X(X) is ind. If the choice of the Proof: Let K, K' be any two poly cpx homeo to X. Over lag K w/ K' to altain a new yoly cyx K") Dualap. , K'' , X(K.) So to prove the claim it suff to show X(te') = X(k). We obtain K" from K via applying the following of. in a seq.

 $\chi(\chi_1 \# \chi_2)$ $V(X, \# X_{c}) = V(X_{i}) + V(X_{2}) - 2$ $E(X, \# X_{\nu}) = E(X,) + E(X_{\nu}) + 2$ $F(X, # X_{c}) = F(X_{i}) - (+ F(X_{c}) - ($ $= (F(X_1) + F(X_2) - 2)$ => $\mathcal{X}(X, \# X_2) = \mathcal{X}(X,) + \mathcal{X}(X_2) - 2$ \square $\Big) = \chi(T^2) + \chi(T^2) - 2$ Exo $\chi(($ \sim C = 0 + 0 - 2= -2 $\chi((2)) = \chi(2) + \chi(7) - 2$ = -2 +0 -2 = - 4 Defn: A graph is planar if it can be realized as the edges of a poly. eps on a sphere. remove . lay flat

=> 21 = 3F \leq 2E = 20 K= cpx on J², K denote the cpx before we glued to obtam K. ĸ $E(\vec{k}) = 2E(k)$ $F(\widehat{K}) = F(K)$ $3F(\vec{k}) \leq E(\vec{k})$ $21 = 7.3 \leq E(\vec{k}) = 2E(k) = 20$ 27 => cuatradúction! => original ass, wrong, ie 165 is not planas. [] 2.4.25 : X (g holes) = 2-29 2.4.26 construct planar dyn for a intertube w/ g-holes. $\chi(\chi \neq \tau^2) = \chi(\chi) + \chi(\tau^2) - 2$ 2 - 2 g. Coloring Then for maps. It colors to any map on 32 = 4 # colors < 7 + 149 - 24 X(X) 2