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Chapter 1

Introduction

1.1 Motivation

Topus is Latin for shape. Ology is Latin for the study of. Consequently, topology
translates to the study of shape. Given an object with some type of geometry (e.g. a
beach ball, a circle, a square, a disk, an inter-tube, a donut (a filled in inter-tube), a
graph, a piece of paper), one can talk about the shape of the object. Intuitively, the
shape of the object is the geometric properties that are preserved under operations
such as bending, pulling, deforming, etc. However, not breaking. Consequently,
things like angles and lengths do not affect shape. If one has two different circles
of different lengths, then one can simply shrink one circle to the size of the other.
Similarly, a square can be made into a circle by rounding off the corners and bending
the edges to make a circle. A slightly more complicated example is seen by deforming
a coffee mug into a donut. A natural question that arises is the following.

Question 1.1.1. When can we say that two objects have different shapes?

Take for example a beach ball and an inter-tube. Looking at these two objects, it
is intuitively clear that they are different and should have different shapes. However,
proving such a statement is difficult without developing tools. A better question
would be the following.

Question 1.1.2. If an ant (an extremely intelligent ant) were placed on a beach
ball and an inter-tube and was given any tools it desired, then could it tell if these
two objects have different shapes?

The answer, perhaps surprisingly, is yes! Suppose that the ant was given a pole
and a very long rope. The ant could tie the rope to the pole and place the pole in
the ground. Then the ant could walk around on the surface, eventually returning
to the pole. Then the ant could tie the other end of the rope to the pole. Then the
ant could start pulling in one end of the rope. If the ant is on a beach ball, then the
rope can always be pulled all the way back in. If the ant is on an inter-tube, then
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6 CHAPTER 1. INTRODUCTION

walking from the outside of the hole to the inside and back out would produce a
loop. If the ant tried to pull in such a loop, then it would get caught on the surface
and eventually could not be entirely pulled in. If we could deform the inter-tube to
a beach ball, then we could produce a loop of rope on a beach ball that could not be
pulled in, which cannot happen. Consequently, an inter-tube and a beach ball have
different shapes. While this is not an explicit proof, this idea may be formalized.
This is the notion of the fundamental group of a space, a specific type of homotopy
group associated to a space.

Figure 1.1: Two different paths walked by an ant.

Another question one could ask is the following.

Question 1.1.3. Can one show that a beach ball and a beach ball that has a disk
cut out of it have different shapes?

The answer, perhaps not surprisingly, is yes. But more surprisingly, an ant
can also tell the difference of shapes. Intuitively, the beach ball has an inside and
an outside. It separates three dimensional space into two regions. However, if we
cut out a disk, then this separation no longer occurs. Consequently, if we could
deform this altered beach ball to a normal beach ball, then we could also take two
separated pieces of space into one, which cannot happed. Again this is not an
explicit proof; however, formalizing this idea leads to the definition of orientations
and homology groups. What is particularly nice about these notions is that an ant
could understand and compute them simply by walking around on the surface.

Informally, saying that an ant can detect a property is to say that a property
is intrinsic to the object. That is, the property is independent of how the object is
viewed. An intrinsic property will be the same regardless of viewing the object in 3
dimensions or viewing the object in 77 dimensions.

In this series of lectures, we will attempt to formalize invariants of shapes in
order to identify different types of shapes and understand their geometric properties.
Along the way, we hope to prove several non-trivial theorems that at first glance
appear to have nothing to do with understanding shape. At the moment, we hope
to cover some of the following material.
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(1) 2-dimensional topology: We will study things like surfaces, Euler characteris-
tics, colorings of maps, the classification of surfaces, and curve graphs.

(2) The fundamental group: We will cover some abstract group theory. After
whihc, we will define the fundamental group, compute it for a circle, and
use it to prove several non-trivial theorem. These include, the fundamental
theorem of algebra, Nash’s equilibrium theorem, the Ham sandwich theorem,
and the Borsuk-Ulam theorem.

(3) Manifolds: We will study things like classifications of manifolds, surgeries of
manifolds, handlebody decompositions of 3-manifolds, and knot theory.

(4) Homology: We will try to understand how to detect when a space has higher
dimensional voids.

(5) Topological data analysis: We will apply topology to questions in data science.
Specifically, we will answer to what extent we can quantify the shape of data
and what new conclusions this can produce, seeing applications to neuroscience
and sociology.

What we specifically choose to cover will depend on the preferences of the stu-
dents. We do not expect the reader to understand all (or any) of the above listed
topics. The goal of these lectures is to give an introduction to topology and to
understand how the pursuit of understanding shape can lead to the development of
several invariants that can be applied not only to topology but also to other areas
of mathematics.

1.2 Remarks on the Exposition

Abstract mathematics is a fields that can very quickly become congested with tech-
nical jargon. The reason for this technical jargon is that it allows mathematicians to
state precise hypotheses and prove theorems in a completely logical framework. In
fact, at times, vague definitions can produce contradictions in the theory. The silver
lining of this congestion is that most all definitions and arguments have an intuitive
interpretation. In these lectures, we will attempt to forgo as much technical jargon
as possible and instead present an intuitive picture of the mathematical story. Con-
sequently, some of our definitions will be vague and imprecise. Our arguments and
proof, at times, may be slightly hand-wavy and incomplete. That is not to say that
we will completely forgo being correct. We will always strive to provide the most
accurate picture of the mathematics as time allows in this course; however, we will
favor exploring more ideas as oppose to exploring more precise formalism.
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1.3 Topological Spaces

This course will be concerned with the study of topological spaces (or spaces for
short). The precise definition of a topological space is rather technical and non-
intuitive. We give the following vague definition.

Definition 1.3.1. A topological space is an object X composed of a set of points
such that each point x in X has a notion of a neighborhood of points that are close
to x.

Remark 1.3.2. Intuitively, a topological space is just a set of points that have a
notion of when two points are close to each other.

We attempt to solidify this definition through several examples.

Example 1.3.3. A single point in the plane is a topological space. The single point
is close to itself, vacuously.

Example 1.3.4. Two disjoint points in the plane is a topological space. The points
are separate. They are not considered close to each other. More generally, any
number of disjoint points in the plane is a topological space.

Example 1.3.5. The plane of real numbers, denoted R2, is the set of pairs of real
numbers (x, y). The plane of real numbers is a topological space. We say that
(x1, y1) is in a neighborhood of (x0, y0) if there exists a small ball about (x0, y0)
that contains (x1, y1), that is, the distance between these two points is small.

Example 1.3.6. Arguing as in example 1.3.5, we can list the following topological
spaces

• circles

• spheres

• inter-tubes (from now on we call an inter-tube a torus)

• cylinders

• disks

• graphs

• 3-dimensional space

• Einstein’s space-time
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Figure 1.2: Examples of spaces

Example 1.3.7. Notice that topological spaces can have the same set of points
but have different notions of when points are close. Let X1 denote the set of points
(x, y) in R2 with y = 0 and 0 ≤ x ≤ 1. Let X2 denote the set of points (x, y) in
R2 with y = 0 and 0 ≤ x < 1 or y = 1 and x = 1. The sets X1 and X2 have the
same ”number” of points. X2 simply has one of its points floating above the rest
of the interval. However, these subsets of R2 are different topological spaces. Every
point in X1 is close to some other point in X1. However, in X2 the point floating
above the interval is not close to any other points. Consequently, they are different
topological spaces.

Remark 1.3.8. The key point to remember is that a topological space is a set of
points that has a notion of when two points are close to each other. For this course,
one may assume that spaces are the objects that we will physically draw, where the
notion of closeness of points is the obvious pictorial one.

Remark 1.3.9. In the next chapter, we will discuss a very broad class of topological
spaces that are intrinsically 2-dimensional in nature. These topological spaces and
their higher dimensional generalizations, in some sense, exhaust most all spaces that
topologists study. These generalizations include simplicial complexes and manifolds.
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Figure 1.3: Spaces with different notions of when points are close.

These may be discussed later in the class.



Chapter 2

2-Dimensional Topology

2.1 Polygonal Complexes

In this section, we introduce a class of topological spaces called polygonal complexes.

Definition 2.1.1. A vertex is a point.

Definition 2.1.2. An edge is a line segment that starts and ends at two distinct
vertices.

Definition 2.1.3. A n-polygon (n ≥ 2) is a disk with n distinct vertices in its
boundary.

Remark 2.1.4. Equivalently, an n-polygon is a piece of paper with n edges (and
consequently, n vertices).

Example 2.1.5. We have that

• A 3-polygon is a triangle,

• a 4-polygon is a square,

• a 5-polygon is a pentagon,

• etc..

Definition 2.1.6. A polygonal complex is an object that is obtained by gluing a
collection of vertices, edges, and n-polygons (possibly with varying values of n).
Gluing means that we match vertices with vertices and edges with edges.

Definition 2.1.7. A graph is a polygonal complex composed entirely of edges such
that the vertices associated to each edge are distinct. A tree is a graph with the
property that every pair of vertices may be joined via a unique sequence of edges.

11
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Figure 2.1: Examples of n-polygons.

Figure 2.2: A polygonal complex.

Remark 2.1.8. A more intuitive way of thinking about a tree is that a tree is a graph
with no ”loops”. If a loop were present in the tree, then transversing the loop in one
direction would give one sequence of edges and transversing the loop in the other
direction would give another sequence of edges.

Proposition 2.1.9. Let Γ be a connected graph. There exists a sub-collection of
edges of Γ that form a connected tree T with the property that T contains all the
vertices in Γ. We call T the spanning tree of Γ.

Remark 2.1.10. Rephrasing the above proposition: every graph admits a subtree
that touches every vertex in Γ. Notice that spanning trees do not necessarily need
to be unique. In other words, a graph may have multiple spanning trees.

We will now prove proposition 2.1.9.

Proof. We break the proof up into parts.
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Figure 2.3: A graph, a tree, and a polygonal complex that is neither a graph nor a
tree.

(1) We may build Γ in steps. That is, we add one edge, creating a connected
graph called Γ1. Then we add another edge, creating a connected graph called
Γ2. Continuing like this, we build Γ3, Γ4, etc. until we have completely built
Γ.

(2) As we are building Γ from the Γ1,Γ2, . . . , we will build spanning trees T1, T2, . . .
for Γ1,Γ2, . . . . The end result will be that once we have completely built Γ,
we will have completely built the desired tree T .

(3) For Γ1, the associated spanning tree T1 is Γ1.

(4) If a new vertex is added to Γ1 to produce Γ2, then T2 is the tree given by Γ2,
that is, we add to T1 the edge that connects the old tree to the new vertex.
If no new vertex is added by passing from Γ1 to Γ2, then we let T1 = T2, that
is, we add no new edges.

(5) We repeat this procedure for Γ3 and T3, etc. until we have built Γ and T . If
a new vertex is added to Γi to produce Γi+1, then Ti+1 is the tree given by Ti
glued to the newly added edge, that is, we add to Ti the edge that connects
the old tree to the new vertex. If no new vertex is added by passing from Γi
to Γi+1, then we let Ti = Ti+1, that is, we add no new edges.

(6) Notice that Ti starts out with having no loops. The only edges that we add
to Ti only extend paths to new vertices and thus do not create loops. Conse-
quently, T is a tree.

We now turn our attention back to more general polygonal complexes.
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Figure 2.4: A graph and two different spanning trees.

Remark 2.1.11. Notice that there is always two ways to glue edges together. Another
way to say this is that each edge can be given a direction indicating a path from one
vertex to another vertex. When we glue two edges, we can glue in two ways. The
first is to glue the edges with the directions both going the same way. The second
is to glue the edges with the directions going opposite ways. These different gluings
can produce different topological spaces!

Definition 2.1.12. A planar diagram is a polygonal complex obtained from a single
2n-polygon where pairs of edges are identified with either the same or opposite
directions.

Notation 2.1.13. We will denote a planar diagram by drawing directions on each
edge and labeling the edges that should be glued. With this convention, we will
always glue edges along the same directions.

2.2 Continuity and Surfaces

2.2.1 Continuity

Definition 2.2.1. Let X and Y denote topological spaces. A map from X to Y ,
denoted f : X → Y , is an assignment of points x in X to points y in Y . We write
f(x) = y.

Definition 2.2.2. We define the following properties of maps f : X → Y .

(1) A map f : X → Y is one-to-one if f(x0) = f(x1) implies that x0 = x1.
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Figure 2.5: Different spaces obtained from gluing along different edge directions.

(2) A map f : X → Y is onto if for each y in Y there exists an x in X such that
f(x) = y.

(3) A map f : X → Y is a bijection if it is one-to-one and onto.

Remark 2.2.3. The items in definition 2.2.2 are intuitively the following statements:

(1) f is one-to-one if f maps each point in X to a unique point in Y .

(2) f is onto if f ”hits” every point in Y .

(3) f is a bijection if it gives a correspondence between the points in X with the
points in Y .

Definition 2.2.4. A function f : R→ R from the real numbers to the real numbers
is continuous at a real number x0 if

lim
x→x0

f(x) = f(x0).

Remark 2.2.5. The above definition can be interpreted as saying the following: f
is continuous at x0 if for all points arbitrarily close to x0, f sends them to points
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Figure 2.6: Using a planar diagram to build a torus.

arbitrarily close to f(x0). This is the notion that we want to generalize to define
when a map between two topological space is continuous.

Definition 2.2.6. Let X and Y denote topological spaces. A map f : X → Y is
continuous if for each point x in X, f maps all points that are arbitrarily close to
x to points arbitrarily close to f(x). A map f is a homeomorphism if there exists a
continuous map g : Y → X such that g(f(x)) = x for all x in X and f(g(y)) = y
for all y in Y . We say g is an inverse of f . If a homeomorphism f : X → Y exists,
then we say that X and Y are homeomorphic.

Remark 2.2.7. Notice that the definition of continuity makes sense since topological
spaces have notions of when points are close. A map being continuous says that
said map respects (is compatible with) the notions of closeness of the topological
spaces. Notice that things like shrinking, stretching, bending, deforming, etc. are
all continuous mappings. However, things like ripping, cutting, break, etc. are not
continuous. Consequently, a cube is homeomorphic to a sphere. We can round off
the edges and bend the faces. However, a cube is not homeomorphic to 6 disks.
Cutting the edges of the cube to produce 6 disks is not continuous.

Notation 2.2.8. From now on, when we say f is a map, we mean that f is a
continuous map.

Remark 2.2.9. In topology, we only care about topological spaces up to homeomor-
phism. If a map f : X → Y is a homeomorphism, then it is a bijection. That is,
X and Y have the same set of points up to the identification given by f . Since
the map f is continuous with a continuous inverse, we have that f preserves the
notions of closeness of points. In other words, if two spaces are homeomorphic, then
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Figure 2.7: Four different planar diagrams obtained from the square.

they have the same points and these points all have the same notions of closeness.
Consequently, these spaces are essentially the same and thus we should view them
as equivalent.

2.2.2 Surfaces

Definition 2.2.10. A surface is a space X such that each point x in X has a
neighborhood that looks like an open disk, denoted D◦, where the open disk is
the space given by pairs of real numbers (x, y) in the plane with x2 + y2 < 1.
Equivalently, X is a surface if for each point x in X there exists a continuous map
f : D◦ → X that is

• one-to-one,

• satisfies f(0, 0) = x, and

• f hits very point arbitrarily close to x.

Remark 2.2.11. Equivalently, a surface is a space that locally looks like an open
disk about every point. This is to say that locally a surface just looks like a piece of
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paper. A surface is a space that is locally 2-dimensional everywhere. Another way
to state this is that a surface is locally homeomorphic to an open disk.

Figure 2.8: Examples of surfaces with local neighborhoods indicated.

Example 2.2.12. Examples of surfaces that we have seen so far include

• the sphere,

• the torus,

• the plane of real numbers,

• the Klein bottle, and

• the real projective plane.

Proposition 2.2.13. The topological space given by a planar diagram is a surface.

Proof. The proof follows from observation. Each point in a planar diagram, after
gluing, has an open disk surrounding it. This uses the fact that for planar diagrams
we are required to glue pairs of edges. One could spell this out more rigorously;
however, we believe the picture makes the idea clear and thus are satisfied.

Example 2.2.14. An edge glued to the north pole of a sphere is not a surface.
Since the neighborhood of the north pole will always be locally homeomorphic to
an open disk with a ”tail” glued on.
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Figure 2.9: Pictorial proof that planar diagrams are surfaces.

Definition 2.2.15. A surface with boundary is a space X that is locally homeo-
morphic to an open disk or the open hemisphere given by (x, y) in the plane with
x2 + y2 < 1 and y ≥ 0.

Figure 2.10: Examples of surfaces with boundaries.

Remark 2.2.16. Vacuously, every surface is a surface with boundary. The boundary
in this case is simply empty!

Remark 2.2.17. Another way to think of a surface with boundary is that it is the
space obtained from a surface by removing a collection of non-overlapping open
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disks in the surface. Consequently, given a surface with boundary, we can glue back
in disks to produce a surface with empty boundary.

Definition 2.2.18. Let X and X ′ be two surfaces. The connect sum of X and X ′

denoted X#X ′ is the surface obtained via the following operation:

• Remove an open disk from both X and X ′ to obtain two surfaces with bound-
aries, say Y and Y ′.

• Glue Y to Y ′ along these newly created boundaries.

Figure 2.11: An example of a connect sum of two surfaces.

Remark 2.2.19. We may realize the connect sum of two surfaces given by planar
diagrams by a cutting and pasting operation on their respective planar diagrams.
The result is illustrated in figure 2.12. Using the planar diagrams from figure 2.7,
we can apply connect sum operations to produce several new planar diagrams and
consequently several new surfaces.

Definition 2.2.20. A polygonal structure for a surface (possibly with boundary)
X is a homeomorphism f : |X| → X where |X| is a polygonal complex.

Remark 2.2.21. A polygonal structure for a surface is simply a way of represent-
ing said surface as a combinatorially gluing of polygons. Such structures have the
advantage that they are combinatorial and thus slightly easier to work with.
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Figure 2.12: Realizing a connect sum of two tori (plural of torus) via operations on
the planar diagrams.

Theorem 2.2.22. Every surface (possibly with boundary) admits a polygonal struc-
ture.

Remark 2.2.23. The proof of this theorem is classical; however, it is quite non-trivial.
So we will take this theorem for granted. Intuitively, this result is believable in light
of the following ”proof”.

Pick a point x in X. A neighborhood of x is an open ball Dx. We may add back
in the boundary of Dx, that is, add back in the points (x, y) such that x2 + y2 = 1.
Pick a point y in X on the boundary of Dy. A neighborhood of y is an open ball
Dy. We may also add back in the boundary of Dy. Considering the original open
balls as faces, the boundaries of Dx and Dy as edges, and adding in vertices where
the boundaries intersect produces a polygonal complex for the points contained Dx

and Dy. Now repeat this process until you have covered the entire surface with balls
and thus given a polygonal complex structure to the surface.

Why is this ”proof” incorrect? There are several reasons. One of the key issues
has to do with the intersections of the boundaries of Dx and Dy. In general, if
one were to pick Dx and Dy arbitrarily, then such intersections would be quite
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pathological and thus one can’t simply build this complex as we did. However, one
can show that one can pick Dx and Dy to be sufficiently nice so that this argument
goes through.

Definition 2.2.24. A surface (possibly with boundary) is compact if it has a polyg-
onal structure composed of a finite number of polygons.

Remark 2.2.25. The classification of surfaces theorem states that every compact
surface with empty boundary is obtained from a finite number of connect sums of
tori and real projective spaces.

2.3 Euler Characteristic

2.3.1 Definitions and properties

Definition 2.3.1. The Euler characteristic of a polygonal complex K with V ver-
tices, E edges, and F faces is

χ(K) := V − E + F.

Proposition 2.3.2. Let Γ be a connected graph. We have that

χ(Γ) ≤ 1

with equality if and only if Γ is a tree.

The proof is similar in spirit to our construction of spanning trees.

Proof. We break the proof up into parts.

(1) As in section 2.1, we may build Γ up step by step and compute the Euler char-
acteristic at each step. Write these step-wise constructions of Γ as Γ1,Γ2, . . . .

(2) Notice that Γ1 is an edge. A direct computation shows that

χ(Γ1) = 1

In this case, Γ1 is a tree.

(3) Adding another edge to Γ1 to build Γ2 can take two different forms.

(a) We could add a new edge along with a new vertex. In this case, the
contributions of the new edge and new vertex cancel and χ(Γ1) = 1.
Also, Γ2 is still a tree.

(b) We could add a new edge between two existing vertices. In this case, the
new edge will contribute a −1 to the Euler characteristic. Consequently,
χ(Γ2) = 0. Also, Γ2 will no longer be a tree.
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(4) We may repeat this procedure with Γ3,Γ4, . . . until we obtain Γ. We spell this
out. Adding another edge to Γi to build Γi+1 can take two different forms.

(a) We could add a new edge along with a new vertex. In this case, the
contributions of the new edge and new vertex cancel and

χ(Γi+1) = χ(Γi).

Also, Γi+1 is a tree if and only if Γi is a tree.

(b) We could add a new edge between two existing vertices. In this case, the
new edge will contribute a −1 to the Euler characteristic. Consequently,

χ(Γi+1) = χ(Γi)− 1.

Also, Γi+1 will no longer be a tree.

(5) As illustrated above, this procedure can only decrease the Euler characteristic.
Consequently, χ(Γ) ≤ 1.

(6) As illustrated above, the Euler characteristic will be 1 if and only if χ(Γi) = 1
for all i if and only if each Γi is a tree. This shows that χ(Γ) = 1 if and only
if Γ is a tree.

Definition 2.3.3. The Euler characteristic of a compact surface (possibly with
boundary) is the Euler characteristic of any polygonal structure for X.

Remark 2.3.4. Notice that it is not immediately clear that the above definition is
well-defined. A surface can admit multiple (in fact, infinitely many) polygonal com-
plex structures. Consequently, we need to show that any two polygonal structures
associated to X have the same Euler characteristics.

Proposition 2.3.5. Any two polygonal structures associated to a surface (possibly
with boundary) X, say X0 and X1, satisfy

χ(X0) = χ(X1).

Proof. Notice that a polygonal complex structure associated to a surface is simply
a way of dividing up the surface into various regions via drawing connecting line
segments on the surface. Drawing both the structures X0 and X1 on X, we obtain
a new polygonal complex X2 obtained by drawing the line segments associated to
both X0 and X1 and adding in vertices as necessary. Observe that X2 may be
obtained from X0 via performing a finite number of the following operations:

(1) (Type 1) Adding an edge between two vertices of a polygon.
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(2) (Type 2) Adding a vertex to the interior of an edge.

(3) (Type 3) Adding a vertex to the interior of a polygon and connecting it to an
existing vertex via an edge.

These are illustrated in figure 2.13.

If all of these operations do not change the Euler characteristic, then χ(X0) =
χ(X2). Similarly, χ(X1) = χ(X2). Consequently, we will have proven the proposi-
tion.

Suppose that Y is a polygonal complex for X with V,E, F vertices, edges, and
faces respectively. Suppose that Y ′ is a polygonal complex obtained from Y via
performing one of the above operations.

(1) Performing a Type 1 operation, we add no new vertices, one new edge, and
divide an old face into two new faces. Consequently,

χ(Y ′) = V − (E + 1) + (F − 1 + 2) = V − E + F = χ(Y )

(2) Performing a Type 2 operation, we add one new vertex, divide an old edge
into two edges, and add no new faces. Consequently,

χ(Y ′) = (V + 1)− (E − 1 + 2) + F = V − E + F = χ(Y )

(3) Performing a Type 3 operation, we add one new vertex, one new edge, and no
new faces. Consequently,

χ(Y ′) = (V + 1)− (E + 1) + F = V − E + F = χ(Y )

This completes the proof.

Example 2.3.6. We polygonal complexes that we’ve seen before, we can compute
the following Euler characteristics:

• χ(S1) = 0.

• χ(S2) = 2.

• χ(T 2) = 0.

• χ(K) = 0.

• χ(P ) = 1.

• χ(D) = 1.
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Figure 2.13: Operations described in section 2.3.1.

Proposition 2.3.7. Let X and X ′ be surfaces. We have the following formula

χ(X#X ′) = χ(X) + χ(X ′)− 2.

Proof. View X and X ′ as polygonal complexes. We will give a description of the
connect sum in terms of polygonal structures. Using this description, we will derived
the formula. We break the proof up into parts.

(1) Perform the Type 2 operation to X and X ′ to obtain edges in both X and X ′

that each have two distinct vertices. Denote these edges by e and e′.

(2) Perform the Type 1 operation to connect the two vertices of e with a new edge
f as to create the polygon depicted in figure 2.14, call this polygon P . Do the
same for e′ to obtain a polygon P ′.

(3) By proposition 2.3.5, this operation of creating P and P ′ does not change the
Euler characteristics of X and X ′.

(4) Remove the interiors of the polygons P and P ′ from X and X ′ to obtain
complexes Y and Y ′.
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Figure 2.14: A polygonal complex used for connect sums of surfaces.

(5) Glue Y and Y ′ along the pairs of edges in the boundaries. This has the
net effect of performing a connect sum operation, producing X#X ′ with a
polygonal complex structure.

(6) Notice that we remove a face from X to obtain Y . Consequently,

χ(X) = χ(Y ) + 1

Similarly,
χ(X ′) = χ(Y ′) + 1

(7) Gluing Y and Y ′ has the net effect of decreasing the number of vertices by 2
and the number of edges by 2. Consequently,

χ(X#X ′) = χ(Y ) + χ(Y ′)− 2 + 2 = χ(X) + χ(X ′)− 2

as desired.

2.3.2 Planarity of Graphs

Definition 2.3.8. A graph Γ is planar if Γ may be realized as the collection of
edges of a polygonal structure for S2. If a graph is not planar, then it is called
non-planar.

Remark 2.3.9. If our graph may be realized as the edges of a polygonal structure
for S2, then removing a face from S2 and laying the remainder of the object flat in
the plane gives a way of embedding our graph in the plane.

Theorem 2.3.10. Let K5 denote the graph with 5 vertices and 10 edges such that
every pair of vertices is connected by a unique edge. The graph K5 is non-planar.
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Proof. We break the proof up into parts.

(1) We will suppose that K5 is planar and derive a contradiction. Thus showing
that our assumption was wrong and K5 is in fact non-planar.

(2) Since we assume that K5 planar, it determines a polygonal structure for S2,
say X. Let V,E, F denote the number of vertices, edges, and faces of X.

(3) By proposition 2.3.5, we have that

2 = χ(S2) = χ(X) = V − E + F = 5− 10 + F =⇒ F = 7.

(4) Notice that each face must have at least 3 edges. Indeed, if a face had two
edges, then the two vertices on the face would be connected via both edges
on the face. But this means that there are two vertices that are not joined
via a unique edge, which contradicts our assumption. Consequently, each face
meets at least 3 edges.

(5) Since each edge meets exactly two faces, we have that

21 = 3F ≤ 2E = 20

a contradiction. Consequently, K5 can not be planar.

2.3.3 Colorings of Maps

Notice that a geographic map may be viewed as a polygonal complex. Consider
a map of the world. Faces are countries or bodies of water, edges are where two
regions meet, and vertices are where three or more regions share a common border.

Question 2.3.11. How many colors does it take to color a map of the world?

Clearly we can ask a more general question.

Question 2.3.12. How many colors does it take to color a map of a compact sur-
face?

In this subsection, we will answer question 2.3.12. To do so, we will need to
fix some conventions; however, the proof will reduce to an application of the Euler
characteristic.

Notation 2.3.13. In this subsection, we will work with compact surfaces without
boundary. When we say a compact surface we will always mean a compact surface
without boundary.
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Figure 2.15: The graph K5.

Definition 2.3.14. A geographic complex associated to a compact surface X is a
polygonal structure satisfying:

(1) Every face does not meet itself,

(2) any two faces that meet share a unique edge, and

(3) at least three faces meet at each vertex.

Remark 2.3.15. Intuitively, the conditions in definition 2.3.14 say that no region has
a border with itself, any two regions can only share a unique connected border, and
vertices are where three or more regions meet.

Definition 2.3.16. A legal coloring of a geographic complex, say K, is an assign-
ment of a color to each face such that if two faces share a common edge, then they
have different colors. We denote the minimum number of colors needed to produce
a legal coloring by N(K).

Notation 2.3.17. Let X denote a compact surface. Let N(X) denote the mini-
mum number of colors needed to produce legal colorings of all geographic complexes
associated to X.
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Theorem 2.3.18. Let X be a compact surface. We have the following inequality:

N(X) ≤
7 +

√
49− 24χ(X)

2
.

Remark 2.3.19. Theorem 2.3.18 says that any may of the surface X may be colored
with

7 +
√

49− 24χ(X)

2

colors.

Remark 2.3.20. The proof of Remark 2.3.18 is actually extremely difficult and non-
trivial. The main difficulty is proving the result when χ(X) = 2, that is, when X
is a sphere (as we will prove in the next section). In this case, it is tedious, but
not difficult to show that N(S2) ≤ 5; however, showing that N(S2) = 4 requires
a lot of work. In fact, the proof of this result relies on the use of a computer to
physically check a number of exhaustive cases. So we will not prove the result for
N(S2); however, we will prove the result for compact surfaces with χ(X) ≤ 1. As
we will see in the next section, this covers the cases of all compact surfaces except
the sphere.

We break the proof of Remark 2.3.18 into several smaller claims before finally
combining them to complete the argument.

Notation 2.3.21. Let K be a geographic complex associated to X satisfying:

(1) N(K) = N(X) and

(2) If K ′ is another geographic complex associated to X with N(K ′) = N(X),
then F (K) ≤ F (K ′).

Claim 2.3.22. We have the following inequality:

(N(X)− 1)F (K) ≤ 2E(K)

Proof. We break the proof up into parts.

(1) We claim that every face in K has at least N(X)− 1 edges. Indeed, suppose
that there is a face in K with strictly less than N(X) − 1 edges, say f . We
form a new geographic complex K ′ in X by shrinking the polygon f (edges,
vertices, and all) to a single vertex. Notice that K ′ is a geographic complex
since in shrinking the face to a vertex, we have created no new edges and only
increased the number of faces that meet at a given vertex. Thus the required
properties will remain satisfied. Notice that the coloring of K produces a
coloring of K ′. Consequently, N(K ′) ≤ N(K). However, F (K ′) ≤ F (K). So
by the minimality assumption on K, we must have that N(K ′) < N(K). So
we can color K ′ with N(X) − 1 colors. The face f had less than N(X) − 1
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neighbors. So using N(X) − 1 colors and coloring of K ′, we may pick a
color that is different from all of the faces adjacent to f and color f this
color. Consequently, N(K) ≤ N(X) − 1. But this breaks our assumption.
Consequently, we must have that each face in K has at least N(X)− 1 edges,
as desired.

(2) Every edge touches two unique faces. So we have that the average number of
edges per face is given by 2E(K)/F (K).

(3) We showed above that each face has at least N(X)− 1 edges. So the average
number of edges per face is greater than or equal to N(X)− 1. Consequently,

(N(X)− 1)F (K) ≤ 2E(K)

Figure 2.16: Shrinking a polygon to a vertex, a modification of K used in sec-
tion 2.3.3.

Claim 2.3.23. We have the following inequality:

3V (K) ≤ 2E(K)

Proof. We break the proof up into parts.

(1) Let K̃ be the polygonal complex that is the pre-glued polygons in K (it is just
a disjoint collection of polygons).

(2) Since two faces meet at every edge, we have

E(K̃) = 2E(K).

(3) Since at every vertex at least 3 faces meet, we have

3V (K) ≤ V (K̃)
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(4) Since K̃ is a disjoint collection of polygons, we have

V (K̃) = E(K̃)

(5) Combining the above equations yields

3V (K) ≤ V (K̃) ≤ E(K̃) = 2E(K)

Claim 2.3.24. We have the following inequality:

N(X)− 1 ≤ 6− 6χ(X)

F (K)

Proof. We combine the inequalities from claim 2.3.22 and claim 2.3.23 to obtain

(N(X)− 1)F (K) ≤ 2E(K)

≤ 6E(K)− 6V (K)

= 6F (K)− 6(F (K)− E(K) + V (K))

= 6F (K)− 6χ(X).

Dividing by F (K) on both sides yields the desired result.

Claim 2.3.25. If χ(X) ≤ 0, then

N − 1 ≤ 6− 6χ(X)

N
.

Proof. Notice that N(K) ≤ F (K). This is simply because if we have the same num-
ber of colors as faces, then we can obviously legally color the complex. Combining
these two observations along with claim 2.3.24 and the fact that χ(X) ≤ 0, we have
that

N(X)− 1 ≤ 6− 6χ(X)

F (K)
≤ 6− 6χ(X)

N
,

as desired.

Combining the above claims, we can prove Remark 2.3.18 in the case of χ(X) ≤
1.

Proof. We break this up into two cases.

(1) Suppose that χ(X) = 1. By claim 2.3.24, we have that

N(X)− 1 ≤ 6− 6

F (K)
≤ 6 =

7 +
√

49− 24χ(X)

2
− 1.

Adding 1 to both sides yields the desired result.
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(2) Suppose that χ(X) ≤ 0. By claim 2.3.25, we have that

N(X)−1 ≤ 6−6χ(X)

N
⇐⇒ N2−N ≤ 6N−6χ(X) ⇐⇒ N2−7N+6χ(X) ≤ 0

This polynomial, on the right-hand-side, is upwards opening and at least has
one point on the N -axis. Consequently, the largest possible N for which this
inequality is satisfied is given by the largest root of this polynomial. By the
quadratic formula, we have that

N(X) ≤
7 +

√
49− 24χ(X)

2
,

as desired.

This completes the proof of the theorem when χ(X) ≤ 1.

2.4 Curves and Orientations

2.4.1 Curves and surfaces

Notation 2.4.1. Let I denote an edge. Equivalently, I is the set of real numbers
x satisfying 0 ≤ x ≤ 1. We will also write I := [0, 1].

Definition 2.4.2. A curve in a topological space X is a map γ : I → X. A loop or
a closed curve in a topological space X is a curve γ : I → X such that γ(0) = γ(1).
Equivalent, a closed curve is a map γ : S1 → X.

Definition 2.4.3. A closed curve γ in a surface X is simple if γ does not intersect
itself and γ can be deformed to lie in the collection of edges of a polygonal structure
associated to X.

Remark 2.4.4. The second part of definition 2.4.3 says that a simple closed curve is
essentially ”differentiable” in some generalized sense from what one may have seen
in a calculus class. What we care about is that it is not pathological. It really just
looks like a copy of S1 drawn on X.

Definition 2.4.5. Given a simple closed curve γ in a surface X, we may take a very
small thickening of the curve γ to produce a solid band about γ, denoted N(γ). If
N(γ) is a cylinder, then γ is 2-sided. If N(γ) is a Möbius band, then γ is 1-sided.

Remark 2.4.6. In other words, a simple closed curve is 2-sided if a small thickening
of the curve is a cylinder, which has 2 boundary components. A simple closed curve
is 1-sided if a small thickening of the curve is a Mobius band, which has 1 boundary
component.
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Figure 2.17: Examples of 1-sided and 2-sided closed curves on a Klein bottle.

Remark 2.4.7. Suppose that X is a surface with a 2-sided closed curve γ. Sup-
pose that cutting along γ gives a connected surface with two boundary components.
Notice that saying that we can re-obtain X by gluing together the boundary com-
ponents is the same as saying that X is the connect sum of another surface with
a torus. Hence, 2-sided closed curves that do not separate surfaces can be used to
detect connect sums with tori.

Figure 2.18: Using 2-sided closed curves to detect connect sums with tori.

Remark 2.4.8. Suppose that X is a surface with a 1-sided closed curves γ. The
small thickening of γ is a Mobius band. Notice that the projective plane is obtained
from the Mobius band by gluing a disk along its boundary.

If we cut out N(γ) from X, then we will produce a Möbius band and a surface
with one boundary component. Consequently, we see that X is the connect sum of
another surface with a projective plane.
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Figure 2.19: Removing a disk from the projective plane gives a Mobius band.

2.4.2 Orientability

Definition 2.4.9. A surface X is orientable if every simple closed curve in X is
2-sided. Otherwise, X is non-orientable.

Remark 2.4.10. If X is orientable, then walking around any closed curve on X will
bring you back standing upwards, as you started. If X is non-orientable, then you
can walk a closed curve such that when you come back you will be standing upside-
down, opposite of how you started. This is somehow a generalized notion of knowing
what is up and what is down, what is in and what is out!

Example 2.4.11. The sphere, the torus, and connect sums of these surfaces are
orientable. The projective plane, the Klein bottle, and connect sums with these
surfaces and any other surfaces are non-orientable.

2.5 Classification of surfaces

The goal of this section is to prove the following result.
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Theorem 2.5.1. Every compact surface X without boundary is homeomorphic to
a connect sum P 2# . . . P 2#T 2# . . .#T 2#S2 for some number of P 2’s and some
number of T 2’s.

Remark 2.5.2. A combinatorial proof of this result proceeds in the following manner:

(1) Show that every compact surface is a planar diagram.

(2) Define operations that can change a planar diagram to a homeomorphic planar
diagram where the edge gluings are of a particular form.

(3) Deduce that all surface, up to homeomorphism, may be represented by a
listable number of planar diagrams.

(4) Show that this listable number of planar diagrams gives all the connect sums
listed in the statement of the theorem.

This proof has the advantage that it is essentially combinatorial. However, the proof
is notationally tedious to write and requires drawing several planar diagrams. The
argument that we present is a generalization of the argument given in [?]. While
combinatorial, the argument that we present is also geometric. Using the geometry
that is lying around, we can able to provide a simpler, more intuitive proof of the
theorem.

We begin by proving the following result, which is the 2-dimensional Poincare
conjecture1

Theorem 2.5.3. If X is a compact surface with χ(X) = 2, then X is homeomorphic
to a sphere.

Proof. We break the proof up into parts.

(1) Pick a polygonal complex structure for X. Using the operations defined in
section 2.3.1, we may assume that the collection of edges in X form a graph.
By proposition 2.1.9, there exists a spanning tree T for said graph.

(2) We define another graph that lives on X. For every face in X, we place a
vertex. We connect two vertices by an edge if there exists an edge shared by
the two faces that is not contained in T . Denote this graph by Γ.

(3) We claim that Γ is connected. Let x, y be two vertices in Γ, represented as
points on the faces of polygons. Notice that a small thickening of T in X
is homeomorphic to a disk, since T being a tree means that it has no loops.
Hence, if we cut out T from X, then we are left with a surface with boundary,
say Y . Clearly, we can connect x and y by a path in Y . Since this path

1However, it never really was a conjecture as its proof is elementary. It is the 2-dimensional
analogue of the generalized Poincare conjecture. Hence, our choice of name.
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avoids the boundary of Y , it is a path on X that misses T . Consequently,
this path must only pass through edges in X that are not contained in T .
Transversing these edges, we construct a path in Γ from x to y. Consequently,
Γ is connected.

(4) Let V,E, F denote the number of vertices, edges, and faces of X. Let V (T ), E(T )
denote the number of vertices and edges of T respectively. Let V (Γ), E(Γ) de-
note the number of vertices and edges of Γ respectively. By construction, we
have that

χ(X) = V − E + F = V (T )− (E(T ) + E(Γ)) + V (Γ) = χ(T ) + χ(Γ).

(5) By proposition 2.3.2, χ(T ) = 1 and χ(Γ) ≤ 1. Consequently,

χ(X) = χ(T ) + χ(Γ) = 1 + χ(Γ) ≤ 2.

(6) By hypothesis, χ(X) = 2. By proposition 2.3.2 and the above formula, we
must have that χ(Γ) = 1 and thus Γ is a tree.

(7) Notice that small thickenings of T and Γ are both homeomorphic to disks. If
we continue to thicken them up until their boundaries meet, then we see that
X is obtained by glueing two disks along their boundaries, which is a sphere.

This completes the proof.

Figure 2.20: A graph defined on the complement of a spanning tree.

In the way of proving Remark 2.5.3, we actually proved the following.

Corollary 2.5.4. If X is a compact surface, then χ(X) ≤ 2.

We now turn to the proof of Remark 2.5.1.

Proof. We break the proof up into parts.
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(1) Theorem 2.5.3 handles the case of χ(X) = 2. So we assume that χ(X) < 2.
Let T and Γ be as before.

(2) Looking at the proof of Remark 2.5.3, we see that since χ(X) < 2 it must be
that Γ is not a tree and thus contains a loop, say γ.

(3) We claim that cutting X along γ produces a connected surface with boundary.
Suppose that cutting along γ separates X into two surfaces with boundary.
Performing this cutting, separates the vertices of X among the two halves.
However, cutting along γ does not cut T . Consequently, T must be not con-
nected. But we know that by construction that T is connected. Consequently,
γ can’t separate X into two pieces and we have shown the claim.

(4) We now have two separate cases to handle.

(a) Case 1: A small thickened neighborhood of γ is a cylinder, that is, γ is 2-
sided. Cutting X along the boundary of this cylinder gives a surface with
two boundary components. Capping both of these boundary components
with disks produces a surface Y . By remark 2.4.7, we see that X is a
connect sum of Y with torus.

(b) Case 2: A small thickened neighborhood of γ is a Möbius band, that
is, γ is 1-sided. Cutting X along the boundary of this Möbius band
gives a surface with one boundary component. Capping this boundary
component with a disk produces a surface Y . By ??, we see that X is a
connect sum of Y with a real projective plane.

(5) Now we repeat this argument, but for Y . By proposition 2.3.7,

χ(Y ) > χ(X).

Consequently, the process terminates when χ(Y ) = 2 and Y is a sphere.

This completes the proof.

Now we will deal with surfaces with boundary components. This is an easy
corollary of Remark 2.5.1.

Notation 2.5.5. Let Σr denote the surface with boundary obtained from the sphere
by removing r disjoint open disks from it.

Theorem 2.5.6. Every compact surface X with r boundary components is homeo-
morphic to a connect sum P 2# . . . P 2#T 2# . . .#T 2#Σr for some number of P 2’s
and some number of T 2’s, where Σr denotes the sphere with r disjoint open disks
removed from it.
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Proof. Notice that X is homeomorphic to a connect sum of a compact surface with-
out boundary, say Y , and Σr. Now use Remark 2.5.1 to express Y as a connect sum
of tori, real projective planes, and a sphere.

Definition 2.5.7. Let X be an compact, orientable surface with r marked points.
By section 2.5, X is a connect sum

X ∼= T 2# . . .#T 2#Σr

with g tori. The genus of X is g. We call X an orientable surface of genus g with r
boundary components

Remark 2.5.8. Let X be an orientable surface of genus g with r boundary compo-
nents. Notice that we can obtain a polygonal structure for Σr from a polygonal
surface for S2 as follows:

• Apply the operations from section 2.3.1, to produce a polygonal structure for
S2 that contains r disjoint faces, say K.

• Remove the above disjoint faces from S2. This gives a polygonal complex
structure for Σr.

It follows that

χ(Σr) = (F (K)− r)− E(K) + V (K) = χ(S2)− r = 2− r

By applying proposition 2.3.7 repeatedly, we have that

χ(X) = χ(Σr) +

g∑
i=1

(χ(T 2)− 2) = 2− r +
∑

i = 1gg(0− 2) = 2− 2g − r

2.6 Curve Graphs

In this section and the next, we restrict our attention to orientable surfaces, that is,
connect sums of spheres and tori. Everything that we discuss here works for non-
orientable surfaces; however, one typically has to deal with two cases when proving
results. The case when one has 2-sided closed curves and the case when one has
1-sided closed curves. We restrict to orientable surface for ease as there is not much
loss of intuition by only considering orientable surfaces. We encourage the reader
to attempt to generalize the results of this section to non-orientable surfaces.

Notation 2.6.1. For this section, when we say a surface, we will mean a compact,
orientable surface possibly with boundary.
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2.6.1 Homotopy Classes of Closed Curves

We give an initial definition of homotopic closed curves. We will revise this definition
later when we discuss fundamental groups.

Definition 2.6.2. Let X be a surface. Let α : I → X and β : I → X be closed
curves. We say that α is homotopic to β if there exists a map H : I × I → X into
X such that H maps the top part of the square to α and the bottom part of the
square to β, that is,

(1) H(s, 0) = α(s)

(2) H(s, 1) = β(s)

(3) H(0, t) = H(1, t) for all t ∈ I

where (s, t) are coordinates for I × I. We write α ∼ β.

Figure 2.21: Examples and non-examples of homotopic closed curves.

Remark 2.6.3. Intuitively, two closed curves are homotopic if we can push and bend
and stretch one closed curve to look like the other closed curve. Moreover, two
closed curves are homotopic if they are reparameterization of each other, that is, a
curve α is homotopic to the curve run along the image of α but with varying speeds
along the way. The additional I parameter encodes these pushes, bends, etc., and
reparameterization.
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Remark 2.6.4. Two closed curves being homotopic is an equivalence relation. Namely,
every closed curve is homotopic to itself. If α is homotopic to β, then β is homotopic
to α (flip the square on its head). If α is homotopic to β and β is homotopic to
γ, then α is homotopic to γ (stack the squares on top of each other). We call a
collection of all simple closed curves that are homotopic to each other a homotopy
class of simple closed curves. We write a homotopy class of simple closed curves
as [α] where α is some closed curve in this homotopy class. This homotopy class is
a coarse perspective on what it means for two closed curves to be the same closed
curve. If we can wiggle one closed curves to obtain another, then they are not that
different as closed curves and thus it is natural to consider them as the same closed
curve. This is what considering homotopy classes does.

Remark 2.6.5. One should notice that we are restricting out attention in this section
to simple closed curves and their homotopy classes. While definition 2.6.2 makes
sense for any closed curves, what is to follow requires that we work with simple
closed curves. This is to avoid having closed curves that cross themselves and to
avoid certain pathologies.

Definition 2.6.6. Let α and β be two simple closed curves in a surface X. The
geometric intersection number between the homotopy class of α, that is, [α], and
the homotopy class of β, that is, [β], is defined by

i([α], [β]) = min
a∼α,b∼β

{number of intersection points of a and b}.

We say that α and β are in minimal position if

i([α], [β]) = number of intersection points of α and β.

Remark 2.6.7. Two homotopy classes have geometric intersection number 0 if and
only if we can wiggle the two simple closed curves in such a manner that makes
them disjoint. The geometric intersection number measures the failure of our best
attempt to make two simple closed curves disjoint.

2.6.2 Curve Graphs

Given a surface X, we can construct a graph using homotopy classes of simple closed
curves.

Definition 2.6.8. Let X be a surface. The curve graph of X is the graph Γ(X) with
a vertex for each homotopy class of simple closed curves, excluding the homotopy
classes that has closed curves that bound disks in X or closed curves in the boundary
of X 2. We connect two vertices [α] and [β] with an edge if and only if i([α], [β]) = 0.

2These are closed curves that we can shrink to a point and thus they don’t really behave like
closed curves as we like to think of them.
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Figure 2.22: Examples of geometric intersection numbers.

Figure 2.23: A part of the curve graph of a surface spanned by 5 homotopy classes
of simple closed curves.

Example 2.6.9. Notice that any simple closed curve on S2 can be shrunk to a
point. Consequently, Γ(S2) is empty.

Example 2.6.10. While this is beyond our means at the moment. One can use the
fundamental group and linear algebra to show that Γ(T 2) is the graph with vertices
the integer lattice in the plane (that is, the points (x, y) in R2 with x and y integers)
excluding the origin. Each homotopy class wraps so many times in one direction and
so many times around in the other direction. The number of wrappings determines
the integer lattice point in the obvious manner. There are no edges in Γ(T 2). We
will revisit this result when we discuss the fundamental group of the torus.

Example 2.6.11. A pair of pants, denote Σ3, is an orientable surface of genus 0
with 3 boundary components. Equivalently, a pair of pants is a sphere with three
disjoint open disks removed from it. By remark 2.5.8, we have that χ(Σ3) = −1.
We claim that Γ(Σ3) is empty. Indeed, suppose that γ is a simple closed curve in
Σ3.
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Now cut out a small thickening of γ out of Σ3. This produces two surfaces with
boundaries, say Y and Y ′. Suppose that these are surfaces of genus g, g′ with r, r′

boundary components. Using a similar argument to ??, we have that

−1 = χ(Σ3) = χ(Y ) + χ(Y ′) = 2− 2g − r + 2− 2g′ − r′

In total, we now have 5 boundary components between Y and Y ′. So r + r′ = 5.
This gives

4 = 2− 2g + 2− 2g′ =⇒ 2g + 2g′ = 0

Since g, g′ are always non-negative integers, we have that g = 0 = g′. If Y has 1
boundary component, then this says that γ was, in fact, shrinkable to a point. If
Y has 2 boundary components, then this says that γ was homotopic to a boundary
component in Σ3. In fact, Y gives the prescribed homotopy, being a cylinder. Notice
that if Y has more than 2 boundary components, then Y ′ has less than 3 boundary
components and the same arguments apply. Consequently, Σ3 does not contain any
simple closed curves that are not homotopic to points nor boundary components.
Consequently, the curve graph of Σ3 is empty.

Remark 2.6.12. For surfaces with Euler characteristic strictly less than zero, we do
not have concrete models for Γ(X). The structures are much more complicated; how-
ever, the structures are much richer. Intuitively, this is maybe clear since surfaces
with negative Euler characteristics, in some sense, have more interesting features.
Hence, more homotopy classes of closed curves can arise and can interact in many
possible ways.

Theorem 2.6.13. Let X be a surface without boundary χ(X) < 0. The curve graph
of X is connected.

Proof. We break the proof up into parts.

(1) Let [α] and [β] be homotopy classes of closed curves in X and consequently
vertices in Γ(X). To show that Γ(X) is connected, we will construct a sequence
of vertices

[α] = [γ0], [γ1], . . . , [γn], [γn+1] = [β]

such that i([γi], [γi+1]) = 0. Consequently, [γi] is connected to [γi+1] by an
edge and thus we can connect [α] to [β] via a sequence of edges, implying that
Γ(X) is connected.

(2) After wiggling α and β, we may assume that i([α], [β]) = n and that α and β
meet at n points, that is, α and β are in minimal position (we only care about
homotopy classes, so we can replace α and β by nicer curves).

(3) First, we assume that n = 1. In this case, slightly thicken α and β in X.
We claim that the union of these two thickenings gives a torus with a disk
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removed. Indeed, the euler characterstic of this thickening if −1. To see this,
one should draw an explicit polygonal structure for the union of these two
thickened curves. This thickening has one boundary component. Since X is
orientable, we have that this thickening is also orientable. Consequently, by
remark 2.5.8, we have that

−1 = 2− 2g − 1 = 1− 2g

where g is the genus of the thickening. By section 2.5, the thickening is
homeomorphic to a torus with a disk removed.

Let γ denote the curve given by the boundary of this torus with a disk removed.
We claim that γ can not be shrunk to a point. Indeed, if γ can be shrunk to
a point, then X would be a torus since the shrinking would give us a capping
off of the torus with boundary. But this cannot be true since we assume that
χ(X) < 0. Consequently, γ cannot be shrunk to a point and thus gives a
vertex in Γ(X). Notice that γ does not meet α nor β. Consequently,

i([α], [γ]) = 0 = i([γ], [β])

and we are finished by the discussion above.

(4) Now we assume that n > 1. Fix directions for α and β. Zooming in about
two consecutive intersection points, we must have that α and β locally look
like one of two options. See figure 2.24.

Figure 2.24: Two possible intersection arrangements of α and β.

(5) Suppose that our local picture looks like the left hand side of figure 2.24 and
consider the surgered curve γ in figure 2.25. First, notice that γ is, in fact, a
closed curve. Away from our local picture γ can be chosen to run along the
curve α. Since γ runs along α, outside of the zoomed in picture, γ meets β
only when the associated part of α meets β; however, in the zoomed in picture,
γ meets β one fewer time that α. Consequently,

i(γ, β) < i(α, β).
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Similarly, since γ runs along α outside of the zoomed in picture, it does not
meet α outside of the zoomed in picture. So γ only meets α in the zoomed in
picture. Consequently, i(α, γ) = 1.

Figure 2.25: Surgered curves used in the proof of Remark 2.6.13.

Finally, we claim that γ is not shrinkable to a point. If it was, then it would
bound a disk. Since α meets γ once, we would have that α enters this disk
and then never leaves. But this would prevent α from closing up and being a
loop. A contradiction. Consequently, γ must not be shrinkable to a point.

(6) Suppose that our local picture looks like the right hand side of figure 2.24 and
consider the surgered curves γ1 and γ2 in figure 2.25. Since γ1 and γ2 run
along α outside of the zoomed in picture, they do not meet α outside of the
zoomed in picture. Consequently,

i(α, γ1) = 0 = i(α, γ2).

Since γ1 and γ2 run along α, we must have that

i(α, β) = i(γ1, β) + i(γ2, β)− 2.

We claim that neither γ1 nor γ2 is shrinkable to a point. If they were, then we
could drag β across the bounding disk and reduce the intersection number of
α and β, see figure 2.26. A contradiction to the assumption that α and β are
in minimal position. Consequently, neither γ1 nor γ2 is shrinkable to a point.

In this case, set γ equal to γ1.

(7) In both cases, we have that

i(α, γ) < i(α, β) i(γ, β) < i(α, β)

So we may repeat this procedure for the pairs α and γ and γ and β until we
have constructed our desired chain.



2.7. NODAL SURFACES 45

Figure 2.26: Reducing the number of intersection points in proof of Remark 2.6.13.

Remark 2.6.14. Notice that our proof made explicit use of the fact that all of our
closed curves were 2-sided. This was used to construct the closed curves γ. Con-
sequently, to have a statement for non-orientable surfaces, one needs to modify the
proof to allow for 1-sided closed curves.

2.7 Nodal Surfaces

Notation 2.7.1. Unless otherwise stated, in this section when we say a surface, we
will mean a compact, orientable surface without boundary.

Definition 2.7.2. Let X be a surface. Let α1, . . . , αn be simple closed curves in X
such that

• #{αi intersect αj} = 0 for all i 6= j

• [αi] 6= [αj ] for all i 6= j

The nodal surface associated to the tuple (X,α1, . . . , αn) is the space obtained from
collapsing each αi to a point. We say that (X,α1, . . . , αn) has n nodes.
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Remark 2.7.3. A nodal surface with n nodes is either locally homeomorphic to an
open disk or locally homeomorphic to two open disks that touch at unique points
in their interiors.

Figure 2.27: Example of a nodal surface.

Proposition 2.7.4. Let X be a surface of genus g. Any nodal surface associated
to X has at most 3g − 3 nodes.

Figure 2.28: A maximal number of nodes on a genus 5 surface.

Proof. We break the proof up into parts.
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(1) Let α1, . . . , αN denote a maximal collection of simple closed curves in X that
satisfy the constraints of definition 2.7.2. To prove the result, we need to show
that N = 3g − 3.

(2) Cut X along α1, . . . , αN . This produces a collection of disjoint surfaces with
boundaries P1, . . . , PM . Suppose that Pj is a surface of genus gj with rj
boundary components.

(3) We claim that gj = 0. Indeed, if the genus is positive on any component, then
by section 2.5 we may find an embedded torus with a disk removed from it
in Pj and consequently we can find another homotopy class of simple closed
curves, say [γ], that is not homotopic to a boundary component of Pj nor
shrinkable to a disk. Realizing this homotopy class in X gives that [γ] 6= [αi]
for all i. A contradiction to the maximality of N . Consequently, gj = 0 for all
j.

(4) Arguing in a similar manner, we know that the curve graphs of the Pj must be
empty. Or else, we could produce another homotopy class and contradict the
maximality of N . By example 2.6.11 and the fact that the [αi] are distinct,
we must have that Pj is a pair of pants.

(5) Every curve αi contributes 2 boundary components to the number of boundary
components of the P1, . . . , PN . Consequently,

2N =
M∑
i=1

ri = 3M

(6) Arguing as in ??, we have that

2− 2g = χ(X) = χ(P1) + · · ·+ χ(PM ) = −M =
−2N

3

Rearranging terms, we have that

3g − 3 = N

as desired.

Definition 2.7.5. The smoothing of a nodal surface (X,α1, . . . , αn) at αi is the
nodal surface

(X,α1, . . . , ai−1, αi+1, . . . , αn)

Remark 2.7.6. The effect of smoothing a node is removing the two touching disks
and glueing in a cylinder in its place. Notice that smoothing (X,α1, . . . , αn) at all
n nodes reproduces the surface X.
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Theorem 2.7.7. Let X be a compact surface without boundary of genus g > 0. Let
(X,α1, . . . , αn) and (X,β1, . . . , βm) be nodal surfaces with n 6= 0 and m 6= 0. We
may obtain (X,β1, . . . , βm) from (X,α1, . . . , αn) by a sequence of either smoothing
nodes or creating new nodes with the constraint that we always have at least one
node.

Remark 2.7.8. While remark 2.7.8 may sound like a slightly obscure result, it ac-
tually has deep implications for complex algebraic geometry and more specifically
enumerative geometry. What is nice about this result is that its statement can be
formulated in terms of curve graphs, yielding a combinatorial proof that essentially
reduces to showing that the curve graph is connected.

Figure 2.29: Sequence of operations to get from one nodal surface to another nodal
surface.

Proof. We break the proof up into parts.

(1) Smooth the nodes α2, . . . , αn on (X,α1, . . . , αn) to obtain (X,α1).

(2) By Remark 2.6.13, there exists a sequence of homotopy classes of simple closed
curves in X

[α1] = [γ0], [γ1], . . . , [γk−1], [γk] = [β1]
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such that
i(γi, γi+1) = 0

and
[γi] 6= [γi+1]

for all i.

(3) Assume that the curves γi are in minimal position, that is,

#{γi intersect γi+1} = i([γi], [γi+1]).

(4) By the above steps, we may form the nodal surface (X,α1, γ1).

(5) Smooth the node α1 to obtain (X, γ1).

(6) Repeat the above procedure

(X,α1) = (X, γ1)

→ (X, γ1, γ2)

→ (X, γ2)

→ · · ·
→ (X, γk−1, γk)

→ (X, γk)

= (X,β1)

(7) Collapse the curves β2, . . . , βm to obtain (X,β1, . . . , βm) from (X,β1).

This completes the proof
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Chapter 3

The Fundamental Group

3.1 Group Theory

Notation 3.1.1. Let A be a set. If a is an element in A, then we write a ∈ A,
which is read ”a in A”.

3.1.1 Definition of a group

Definition 3.1.2. A group is a set G along with a map ? : G×G→ G, denoted as
the pair (G, ?), satisfying:

(1) (unital) There exists an element e in G such that ?(e, g) = g = ?(g, e) for all
g in G. We call e the unit or identity in G.

(2) (inverses) For each a in G, there exists an a−1 in G such that ?(a, a−1) = e =
?(a−1, a). We call a−1 the inverse of a.

(3) (associativity) For all a, b, c in G, we have that

?(a, ?(b, c)) = ?(?(a, b), c)

A group G is commutative or abelian if for all a, b in G, we have

?(a, b) = ?(b, a)

Remark 3.1.3. A group is really just a set that has some well-behaved notion of
multiplying/adding two elements to produce a new element. Typically, we will
write ?(a, b) as a ? b. Again, thinking of ? as some sort of multiplication/addiction.

Example 3.1.4. The following are all examples of abelian groups:

• The integers, denoted Z, with ? given by addition. The unit is zero.

• The real numbers, denoted R, with ? given by addition. The unit is zero.

51
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• The non-zero real numbers with ? given by multiplication. The unit is one.

• The positive real numbers, denoted R+, with ? given by multiplication. The
unit is one.

• Let G = {−1, 1} with ? be given by multiplication. The unit is one.

Example 3.1.5. The trivial group is the group with one element. In this case, the
group only contains a unit and multiplication/addition with itselfs is itself. One
should think of the set {0} with addition given by usual addition of integers.

Proposition 3.1.6. Let G be a group.

(1) If g ? h = h or h = h ? g for some h in G, then g = eG.

(2) If g ? h = eG or g = h ? g, then h = g−1.

Remark 3.1.7. The content of proposition 3.1.6 is that units/identity elements and
inverses are unique. That is, a group has a single unit and every element has a single
inverse.

Proof. We prove the two parts.

(1) If that g ? h = h for some h ∈ G, then

g = g ? eG = g ? h ? h−1 = h ? h−1 = eG

If h ? g = h for some h ∈ G, then

g = eG ? g = h−1 ? h ? g = h−1 ? h = eG

(2) If g ? h = eG, then

h = eG ? h = g−1 ? g ? h = g−1 ? eG = g−1

If h ? g = eG, then

h = h ? eG = h ? g ? g−1 = eG ? g
−1 = g−1

Example 3.1.8. Notice that we can turn a clock into a group. Suppose that we use
military time. Then we say that 5 hours after 20 o’clock is 1 o’clock. That is, we
only consider hours 0 to 23. If we exceed 23 hours, then we simply start counting
again. Using this idea we define a group.

Let Z/24 := {0, 1, 2, 3, . . . , 23}. Let ? be given by ?(a, b) = a+ b− 24 · n, where
n is the largest number of times that we can subtract 24 from a+ b and still have a
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non-negative number. This has the effect of achieving the above counting scheme.
We say that we count modulo 24.

Of course, there was nothing special about the number 24. We can similarly
define a group Z/m for any positive integer m. We will spell this out more precisely.

Let m be a non-negative integer and let Z/m = {0, 1, . . . ,m}. Define ? : Z/m×
Z/m→ Z/m by

?(a, b) = r

where r is the smallest non-negative integer such that

0 ≤ r = a+ b−m · n

for some positive integer n. We now check that the axioms of a group are satisfied.

(1) (unital) Clearly, 0 ∈ Z/m is the unit.

(2) (inverses) Let a ∈ Z/m. We have that m− a is the inverse of a since a+ (m−
a) = m, which is zero modulo m.

(3) (associativity) This one is slightly more tricky. Let a, b, c ∈ Z/m. Suppose
that

• 0 ≤ r1 = a+ b−m · n1 < m

• 0 ≤ r2 = b+ c−m · n2 < m

• 0 ≤ s1 = r1 + c−m · k1 < m

• 0 ≤ s2 = a+ r2 −m · k2 < m

Notice that

s1 = ?(?(a, b), c) s2 = ?(a, ?(b, c))

Consequently, to prove associativity, we need to show that s1 = s2.

0 < s1 = a+ b+ c−m · n1 −m · k1 = a+ b+ c−m · (n1 + k1) < m

and

0 < s2 = a+ b+ c−m · n2 −m · k2 = a+ b+ c−m · (n2 + k2) < m

Consequently, n1 + k1 and n2 + k2 are both the large positive integers such
that

0 < a+ b+ c−m · n1 −m · k1 = a+ b+ c−m · n < m

It follows that n1 + k1 = n = n2 + k2. By the above equation, we have that
s1 = s2, as desired.
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(4) (Commutativity) Let a, b ∈ Z/m. Notice that the the smallest non-negative
integer such that

a+ b−m · n

is non-negative is the same as the smallest non-negative integer such that

b+ a−m · n

is non-negative. Consequently, ?(a, b) = ?(b, a).

From now on, we will denote addition on Z/m by + instead of ?. We call (Z/m,+)
the cyclic group of order m or Z mod m.

Example 3.1.9. Let Sn denote the set of bijections1 f : {1, . . . , n} → {1, . . . , n}.
That is, Sn is the set of all possible ways of permuting the numbers 1, . . . , n. For
example, if n = 3, then these would be

• 1 7→ 1, 2 7→ 2, 3 7→ 3

• 1 7→ 1, 2 7→ 3, 3 7→ 2

• 1 7→ 2, 2 7→ 1, 3 7→ 3

• 1 7→ 2, 2 7→ 3, 3 7→ 1

• 1 7→ 3, 2 7→ 1, 3 7→ 2

• 1 7→ 3, 2 7→ 2, 3 7→ 1

In general, there are n! = n · (n− 1) · · · · · (2) · 1 elements in Sn. We turn Σn into a
group by defining f ? g = f ◦ g. We now check the axioms of a group.

(1) (unital) The identity permutation, that is, the permutation that doesn’t per-
mute, is the unit.

(2) (inverses) Since Sn is composed of bijections, given f in Sm there is an inverse
f−1 in Sm such that f ◦ f−1 and f−1 ◦ f is the identity permutation.

(3) Since composition of functions is associative, ? is associative.

We call (Sn, ◦) the permutation group on n elements. Notice that for n ≥ 3, Sn is
not an abelian group.

Definition 3.1.10. Let (G, ?G) and (H, ?H) be groups. The product group of G and
H, denoted G×H is the group with set the product set G×H and multiplication
given by

?((g0, h0), (g1, h1)) = (?G(g0, g1), ?H(h0, h1))
1Recall that f is a bijection if f is one-to-one and onto. So f(x) = f(y) implies that x = y. For

each z there exists x such that f(x) = z.
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Remark 3.1.11. One should actually check that the product of two groups is again
a group. We briefly highlight why this is true.

(1) (unital) The unit of G×H is (eG, eH).

(2) (inverses) The inverse of (g, h) is (g−1, h−1).

(3) (associative) ? is associative since ?G and ?H are associative.

(4) (commutative) One can check that if G and H are both commutative, then
G ×H is commutative. However, if either G or H is not commutative, then
G×H will not be commutative.

3.1.2 Group homomorphisms

Definition 3.1.12. Let (G, ?) and (H, •) denote two groups. A map φ : G→ H is
a homomorphism if for all a, b in G, we have that φ(a ? b) = φ(a) ? φ(b).

Remark 3.1.13. Recall that we defined a map between topological spaces to be
continuous if it respected the additional structures of topological spaces; namely, it
respected the notions of closeness of points. A group homomorphism embraces the
analogue of this constraint for groups, that is, a group homomorphism is a map that
respects the additional multiplicative/additive structure of the sets.

Proposition 3.1.14. If φ : G→ H is a group homomorphism, then

(1) φ(eG) = eH

(2) φ(g−1) = φ(g)−1

Proof. We prove the two parts:

(1) If g ∈ G, then

φ(g) = φ(eG · g) = φ(eG) · φ(g)

By proposition 3.1.6, we have that φ(eG) = eH .

(2) If g ∈ G, then using the above result gives

eH = φ(eG) = φ(g ? g−1) = φ(g) ? φ(g−1)

By proposition 3.1.6, we have that φ(g−1) = φ(g)−1.

Definition 3.1.15. A group homomorphism φ : G→ H is an isomorphism if

• for all g1, g2 ∈ G, φ(g1) = φ(g2) implies that g1 = g2
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• for all h ∈ H, there exists g ∈ G such that φ(g) = h.

Equivalently, an isomorphism is a bijective homomorphism. We say that G and H
are isomorphic.

Remark 3.1.16. Notice that if two groups are isomorphic, then they have the same
elements and the notions of multiplying/adding elements agree. Consequently, they
are abstractly the same. Everything is just represented by different symbols. This
is the notion of an isomorphism.

Example 3.1.17. Consider the map φ : (Z,+) → (R,+) given by φ(x) = π · x.
Clearly, φ is a group homomorphism. Indeed,

φ(x+ y) = π(x+ y) = πx+ πy = φ(x) + φ(y)

The map φ : (Z,×) → (R,×) given by φ(x) = π · x is not a group homomorphism.
Indeed,

φ(2 · 1) = 2π 6= 2π · π = φ(2) · φ(1)

a contradiction.

Example 3.1.18. Consider the map φ : (R,+)→ (R+,×) given by φ(x) = exp(x).
Clearly, φ is a group homomorphism. Indeed,

φ(x+ y) = exp(x+ y) = exp(x) · exp(y) = φ(x) · φ(y)

Since exp has an inverse log, we have that φ is actually an isomorphism.

Example 3.1.19. Consider the map φ : Z/m → Sm given by letting φ(k) :
{1, . . . ,m} → {1 . . . ,m} be given by φ(k)(`) = k + ` modulo m. It embeds the
cyclic group as the subgroup of cyclic permutations.

Example 3.1.20. Consider the map φ : G×G→ G given by φ(x, y) = x. Clearly,
φ is a homomorphism.

Example 3.1.21. Consider the map φ : G→ G×G given by φ(x) = (x, x). Clearly,
φ is a homomorphism.

3.1.3 Fundamental Thoerem of finitely generated abelian groups

Groups that are abelian tend to be much more well-behaved than groups that are
not abelian.

Definition 3.1.22. Let G be a group. We say that g1, . . . , gn ∈ G generate G if each
element g ∈ G may be obtained as a product composed of the elements g1, . . . , gn
and g−11 , . . . , g−1n .
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Remark 3.1.23. Intuitively, a set of elements generates a group G if every element
of G can be obtained via multiplying and taking inverses in the set of generators.
Consequently, the generators hold a lot of the important information of the group.

Example 3.1.24. We claim that 1 ∈ Z generates Z. Indeed, if n ∈ Z is positive,
then

∑n
i=1 1 = n. If n is negative, then

∑−n
i=1−1 = n. Similarly, 1 ∈ Z/m generates

Z/m.

Theorem 3.1.25. [The Fundamental Theorem of Finitely Generated Abelian Groups]
Let G be an abelian group and suppose that there exists a finite set of elements that
generate G. There exists an isomorphism

G ∼= Z× · · · × Z× Z/m1 × · · ·Z/mk

For some finite number of copies of Z and a finite number of possibly different cyclic
groups.

Remark 3.1.26. Unfortunately, the proof of Remark 3.1.25 is beyond the scope of
this class. To the author’ knowledge, the easiest proof of Remark 3.1.25 requires
developing the theory of modules. That is, one develops more theory that allows
one to rephrase and ultimately prove Remark 3.1.25. However, it is unlikely that we
will need to use Remark 3.1.25 during this course. We simply state Remark 3.1.25
for cultural background.

3.2 The Fundamental Group

3.2.1 Homotopy Classes of Based Closed Curves

The discussion in this subsection will mirror and overlap with the discussion in
section 2.6.1. The difference being that in this subsection we will work with curves
on arbitrary topological spaces as well as based curves. We repeat the discussion
mostly for the completeness of exposition of this particular chapter.

Definition 3.2.1. Let X be a topological space. A closed curve or loop in X is a
continuous map γ : [0, 1] → X satisfying γ(0) = γ(1). We call γ(0) the base point
of γ.

Remark 3.2.2. Equivalently, a closed curve may be thought of a map γ : S1 → X.
Notice that γ need not look like a circle in X. The map that sends S1 to a single
point in X is a loop. It is just a trivial or constant loop.

Notation 3.2.3. Let I := [0, 1] denote the unit interval.

Definition 3.2.4. Let X be a topological space and let α : I → X and β : I → X
be two closed curves satisfying α(0) = β(0). A based homotopy of loops from α to
β is a continuous map H : [0, 1]× [0, 1]→ X satisfying:
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• H(s, 0) = α(s)

• H(s, 1) = β(s)

• H(0, t) = α(0) = β(0) = H(1, t)

where we have coordinates (s, t) for I × I. If such a based homotopy exists, then we
say that α and β are based homotopic and write α ∼ β.

Remark 3.2.5. Intuitively, two loops are based homotopic if the following holds:

• The loops have the same base points and

• we can deform and/or reparameterize one loop to obtain the other while keep-
ing the base points fixed. The presence of the additional parameter of I in H
encodes the deformation.

Definition 3.2.6. The based homotopy class of a based closed curve α : I → X is
the collection of all based closed curves β : I → X satisfying:

(1) α(0) = β(0)

(2) α ∼ β.

We denote the based homotopy class of α by [α].

Remark 3.2.7. The based homotopy class of a closed curve is simply the collection
of all curves that can be deformed to it while leaving the base points fixed. Passing
to homotopy classes is essentially the act of forgetting that two curves are different
if they can be deformed to each other. Notice that passing to homotopy classes
partitions the collection of all based closed curves. That is, each based closed curve
belongs to a unique homotopy class.

Definition 3.2.8. Let α, β : I → X be two based loops with the same base points.
The concatenation of β onto α is the loop α ? β : I → X given by

α ? β(t) =

{
α(2s) 0 ≤ s ≤ 1/2

β(2s− 1) 1/2 ≤ s ≤ 1
.

Remark 3.2.9. Notice that α ? β says that we run along α at twice the usual speed
and then we run along β at twice the usual speed. This new curve is continuous
because at t = 1/2, we have that

α(2(1/2)) = α(1) = α(0) = β(0) = β(2(1/2)− 1)

So, in some sense, the resulting curve is continuous since we never picked up our
pencil. This new curve is a closed curve because

α ? β(0) = α(0) = β(0) = β(1) = α ? β(1)
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3.2.2 Definition of the fundamental group

Definition 3.2.10. A based topological space is a topological space X along with a
point, called the base point, x0 in X. We denote this based topological space by the
pair (X,x0).

Given a based topological space (X,x0), we can use homotopy classes of closed
curves with base points at x0 to build a group.

Definition 3.2.11. The fundamental group of a based topological space (X,x0) is
the group π1(X,x0) with underlying set

π1(X,x0) = {[α] | α : I → X is a based closed curve with α(0) = x0}

and multiplication given by concatenation of loops.

There is a lot to check to ensure that the fundamental group is, in fact, a group.
This will be the course of discussion for the remainder of this section.

Claim 3.2.12. Let a, b denote homotopy classes of loops based at x0. For all
α, α′ ∈ a and β, β′ ∈ b, we have that

[α ? β] = [α′ ? β′]

Remark 3.2.13. What claim 3.2.12 says is that concatenation of loops descends to a
well-defined operation on homotopy classes of based loops. The homotopy class that
we obtain from concatenating two representatives in two homotopy classes did not
depend on our choice of representatives. This says that the multiplicative structure
of the fundamental group is well-defined, that is, it makes sense. This holds because
we can apply the homotopy from α to α′ on the first part of the concatenated loop
and then apply the homotopy from β to β′ on the second part of the concatenated
loop, that is, we concatenate the homotopies.

Proof. Suppose that α, α′ ∈ a and β, β′ ∈ b. We have that α ∼ α′ and β ∼ β′.
Suppose that H : I × I → X gives the homotopy from α to α′ and G : I × I → X
gives the homotopy from β to β′. Define a homotopy F : I × I → X by

F (s, t) =

{
H(2s, t) 0 ≤ s ≤ 1/2

G(2s− 1, t) 1/2 ≤ s ≤ 1

Notice that F is continuous at s = 1/2 since

x0 = α′(1) = H(1, t) = G(0, t) = β(0) = x0

Also

(1) F (s, 0) = α ? β(s)
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(2) F (s, 1) = α′ ? β′(s)

(3) F (0, t) = x0 = F (1, t)

Consequently, F gives a based homotopy from α ? β to α′ ? β′. It follows that
[α ? β] = [α′ ? β′], as desired.

Figure 3.1: The pictorial description of the homotopy in the proof of claim 3.2.12.

Now that we know that concatenation is a well-defined operation on homotopy
classes of based loops, we will turn out attention to verifying the axioms of a group
(recall definition 3.1.2).

Claim 3.2.14. The unit of π1(X,x0) is homotopy class of based loops that contains
the constant loop, that is, the map cx0 : I → X given by cx0(s) = x0 for all s in I.

Remark 3.2.15. Notice that concatenating a loop α with the constant loop does not
reproduce the original loop α. Instead, we obtain a loop that is constant for 0 ≤
s ≤ 1/2 and then runs along α at twice the usual speed. Consequently, cx0 ? α 6= α;
however, these two loops are homotopic. To produce the homotopy, we stay constant
at x0 for shorter and shorter periods of time until we are constant at x0 only at s = 0.
The homotopy tells us when we should start running along α. Another way to view
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this is to notice that the images of cx0 ? α 6= α ”look the same”. The maps are just
parameterized differently. The homotopy interpolates from one parameterization to
the other.

Proof. Let [α] be in π1(X). We need to show that

cx0 ? α ∼ α ∼ α ? cx0

Indeed, consider the homotopy H : I × I → X given by

H(s, t) =

{
x0 0 ≤ s ≤ t

2

α
(
2s−t
2−t

)
t
2 ≤ s ≤ 1

One can check that H is continuous. Also

(1) H(s, 0) = α(s)

(2) H(s, 1) = cx0 ? α(s)

(3) H(0, t) = x0 = H(1, t)

Consequently, H gives the desired homotopy from cx0 ? α to α. Similarly, consider
the homotopy G : I × I to X given by

H(s, t) =

{
α
(

2s
2−t

)
0 ≤ s ≤ 2−t

2

x0
2−t
2 ≤ s ≤ 1

gives the desired homotopy from α ? cx0 to α.

Figure 3.2: The pictorial description of the homotopy in the proof of section 3.2.2.
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Claim 3.2.16. The inverse of an element [α] ∈ π1(X,x0) is the homotopy class of
based loops that contains the loop α−1 : I → X given by α−1(s) = α(1− s).

Remark 3.2.17. Intuitively, α−1 is simply α ran in reverse. Notice that when we
perform a based homotopy, we only need to keep the base point fixed at time s = 0.
Consequently, we can perform the following homotopy described in figure 3.3. This
gives a based homotopy from α ? α−1 to the constant loop at x0.

Figure 3.3: The geometric description of the homotopy in the proof of remark 3.2.17.

Proof. Let [α] be in π1(X,x0). We need to show that

α ? α−1 ∼ cx0 ∼ α−1 ? α

Indeed, consider the homotopy H : I × I → X given by

H(s, t) =


α(2s) 0 ≤ s ≤ t

2

α(t) t
2 ≤ s ≤

2−t
2

α−1(2s− 1) 2−t
2 ≤ s ≤ 1

One can check that H is continuous. Also
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(1) H(s, 0) = cx0(s)

(2) H(s, 1) = (α ? α−1)(s)

(3) H(0, t) = x0 = H(1, t)

Consequently, H gives the desired based homotopy from α ? α−1 to cx0 . The con-
struction of the homotopy for cx0 ∼ α−1 ? α is the same as the homotopy above,
simply replace α with α−1 and α−1 with α.

Claim 3.2.18. The multiplication given by concatenating loops is associative for
elements of π1(X,x0).

Remark 3.2.19. Intuitively, claim 3.2.18 is true because the curves (α?β)?γ and α?
(β ?γ) have the same images in X. They simply have different reparaemterizations.
In the former, we run α four times as fast, then run β 4 times as fast, and then
run γ two times as fast. In the latter, we run α two times as fast, then run β four
times as fast, and then run γ four times as fast. The based homotopy will simply
interpolate from one parameterization of the image to another.

Proof. Let [α], [β], [γ] be in π1(X,x0). We need to show that

(α ? β) ? γ ∼ α ? (β ∼ γ)

Indeed, consider the homotopy H : I × I → X given by

H(s, t) =


α
(

4s
t+1

)
0 ≤ s ≤ t+1

4

β (4s− t− 1) t+1
4 ≤ s ≤

t+2
4

γ
(
4s−t−1
2−t

)
t+2
4 ≤ s ≤ 1

Notice that

(1) H(s, 0) = ((α ? β) ? γ)(s)

(2) H(s, 1) = (α ? (β ? γ)(s)

(3) H(0, t) = x0 = H(1, t)

Consequently, H gives the desired based homotopy from (α?β)?γ to α? (β ?γ).
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Figure 3.4: The pictorial description of the homotopy in the proof of claim 3.2.18.

3.2.3 Basic properties of the fundamental group

Proposition 3.2.20. Given a continuous map f : X → Y there is an associated
group homomorphism f∗ : π1(X)→ π1(Y ) given by

f∗([α]) = [f ◦ α]

Proof. We need to check two things

• If α ∼ α′, then f ◦ α ∼ f ◦ α′. This says that f∗ is well-defined. It did not
depend on our choice of α.

• f(α ? β) = f(α) ? f(β). This says that f∗ is a homomorphism.

We prove the above items:

• If H is the homotopy from α to α′, then f ◦H is the homotopy from f ◦ α to
f ◦ α′.

• Computing

f(α ? β)(s) =

{
f(α(2s)) 0 ≤ s ≤ 1/2

f((α(2s− 1))) 1/2 ≤ s ≤ 1
= f(α) ? f(β)(s)
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as desired.

This completes the proof.

Proposition 3.2.21. Let X be a topological space and let x0, x1 be points in X. If
there exists a curve γ : I → X such that γ(0) = x0 and γ(1) = x1, then the groups
π1(X,x0) and π1(X,x1) are isomorphic.

Remark 3.2.22. Intuitively, why proposition 3.2.21 holds is that the path γ gives us
a way of turning loops based at x1 into loops at x0 and vise-versa. Namely, we go
along the path γ, then we go along the loop based at x1, and then we return along
the opposite direction of γ to end up back at x0, producing the desired loop.

Notation 3.2.23. In light of proposition 3.2.21, we will often drop the base point
from our notation for the fundamental group of a space. We will simply write π1(X)
and only mention the base point when necessary.

Proof. We will use the fact that concatenation of path, not just loops, is associative
up to homotopy. Notice that section 3.2.2 proves this for paths, simply replace
all loops with paths that have meeting end points. Consequently, we will ignore
parentheticals. Let γ−1 : I → X denote the curve given by γ−1(s) = γ(1 − s). We
define maps φ0 : π1(X,x1)→ π1(X,x0) and φ1 : π1(X,x0)→ π1(X,x1) by

φ0([α]) = [γ ? α ? γ−1]

and

φ1([β]) = [γ−1 ? β ? γ]

Notice that γ ? α ? γ−1 and γ−1 ? β ? γ are both closed curves based at x1 and x0
respectively. Indeed,

γ ? α ? γ−1(0) = γ(0) = γ−1(1) = γ ? α ? γ−1(1)

and

γ−1 ? β ? γ(0) = γ−1(0) = γ(1) = γ−1 ? β ? γ(1)

To prove the proposition, we need to show two things. First, we need to show that
φ0 and φ1 are homomorphisms. Second, we will show that φ0 ◦ φ1 and φ1 ◦ φ0 are
the identities. It will follow that φ0 is a bijective group homomorphism, that is, an
isomorphism. This will prove the result.

(1) We first show that φ0 is a group homomorphism. Indeed, we have that

φ0(α ? β) = γ−1 ? α ? β ? γ ∼ γ−1 ? α ? γ ? γ−1 ? β ? γ = φ0(α) ? φ0(β)

Similarly, φ1 is a homomorphism.
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(2) We now show that φ0 ◦ φ1(α) = α for all [α] in π1(X,x0). Indeed, we have
that

φ0(φ1(α)) = φ0(γ
−1 ? α ? γ) = γ ? γ−1 ? α ? γ ? γ−1

Similalry, φ1 ◦ φ0(β) = β for all [β] ∈ π1(X,x1).

This completes the proof.

Proposition 3.2.24. Let D denote the closed disk in R2, that is,

D := {(x, y) ∈ R2 | x2 + y2 ≤ 1}

The fundamental group of D is trivial.

Proof. Let α : I → D be a closed curve based at (0, 0). We claim that α is based
homotopic to the constant loop c(0,0) : I → D given by c(0,0)(s) = (0, 0) for all s ∈ I.
Consider the homotopy H : I × I → D given by

H(s, t) = α(st)

We claim that H is well-defined. That is, H is a map of I×I into D. Since α : I → D,
we may write α is parametric coordinates

α(s) = (αx(x), αy(s))

Since α lands in D, we have that

αx(s)2 + α(s)2 ≤ 1

It follows that

|H(s, t)|2 = αx(st)2 + α(st)2 ≤ 1

and consequently H is a map in to D. Notice that

(1) H(s, 0) = c(0,0)

(2) H(s, 1) = α(s)

(3) H(0, t) = x0 = H(1, t)

It follow that α is base homotopic to c(0,0); however, as we saw in section 3.2.2, c(0,0)
is the unit of π1(D). Consequently, every curve is homotopic to the unit and there
is a unique homotopy class of based loops in D. By definition, we have that π1(X)
is the group with one element, the trivial group.
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3.3 Fundamental Group of the Circle

The goal of this section is to compute the fundamental group of the circle.

Theorem 3.3.1. There is a group isomorphism π1(S
1) ∼= Z.

Remark 3.3.2. Intuitively, the isomorphism in Remark 3.3.1 is given by counting
the number of times a loop wraps around the circle. However, proving this theorem
rigorously requires a quite a bit of work.

Notation 3.3.3. We fix the following for this section.

(1) S1 = {(x, y) ∈ R2 | x2 + y2 = 1} is the circle of radius 1.

(2) π : R→ S1 is the map given by π(s) = (cos(2πs), sin(2πs)).

3.3.1 Path/Homotopy lifting

In this subsection, we prove two technical lemmas that are the crux of the proof of
Remark 3.3.1.

Lemma 3.3.4. Let γ : I → S1 be a curve with base point (1, 0). Given a point
n ∈ Z ⊂ R there exists a unique curve γ̃ : I → R such that

(1) π ◦ γ̃ = γ and

(2) γ̃(0) = n

We call γ̃ a lift of γ to R.

Remark 3.3.5. Intuitively, the map π : R→ S1 locally looks like a homeomorphism.
That is, if we restrict to a small segment of the circle, then the inverse image of
this segment under π is a disjoint collection of small segments in R. So by picking a
segment in R, we may locally lift our path in the segment downstairs to the segment
upstairs. This is the idea of why the statement holds. The proof will be slightly
notationally involved. So keep this in mind if you brave reading the proof!

Proof. We break the proof up into parts.

(1) Divide the interval [0, 1] into segments

[0 = s0, s1], [s1, s2], . . . , [sk−2, sk−1], [sk−1, sk = 1]

such that either

γ((si, si+1)) ⊂ {(cos(2πθ), sin(2πθ)) | θ ∈ (0, 1)}

and
γ(si) = (1, 0) = γ(si+1)

or γ([si, si+1]) is the constant map to (1, 0).
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Figure 3.5: A lift of a curve.

(2) Essentially, we are recording when the curve γ crosses over the base point
(1, 0) of our circle.2

(3) We may define a map

η : {(cos(2πθ), sin(2πθ)) | θ ∈ [0, 1)} → R

given by
η((cos(2πθ), sin(2πθ)) = θ

Notice that this map η is a local homeomorphism.

(4) Similarly, we define a map

σ : {(cos(2πθ), sin(2πθ)) | θ ∈ (0, 1]} → R

given by
σ((cos(2πθ), sin(2πθ)) = θ − 1

Notice that σ is also a local homeomorphism.

2There is a technical point that I am hiding here. The unit interval is compact and consequently
we can actual produce this finite subdivision.
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(5) Given our curve γ, we define the lift of γ, denote γ̃ as follows: We begin by
setting γ̃(0) = n.

γ̃(s) =


γ̃(si) + η(γ(s)) γ increasing counter-clockwise at si

γ̃(si) + σ(γ(s)) γ decreasing clockwise at si

γ̃(si) γ constant on [si, si+1]

This doesn’t quite pin down γ̃. To achieve this, we need to set γ̃(si+1) =
lims→si+1 γ̃(s).

(6) We have used η and σ to lift each of these individual pieces and we lifted to
where we left off. One can check that these lifted pieces glue together to give
a continuous map γ̃.

(7) Notice that the constraint π ◦ γ̃ = γ essentially forces our hand in defining
γ̃ since locally above a segment of γ the curve γ̃ must be the same segment
lifted above to R. Remember η is a local homeomorphism. Our hands were
forced in the above construction except in choosing where we started our lifts;
namely, our choices were unique up to selecting n. This proves the uniqueness
statement.

There is a generalization of lemma 3.3.4 from paths to homotopies of paths.

Lemma 3.3.6. Let H : I × I → S1 be a based homotopy with base point (0, 1
2π ).

Given a point n ∈ Z ⊂ R there exists a unique based homotopy H̃ : I × I → S1 such
that

(1) π ◦ H̃ = H and

(2) H̃(0, t) = n

(3) H̃(1, t1) = H̃(1, t2) for all t1, t2 ∈ I.

We call H̃ a lift of H to R.

Remark 3.3.7. On an intuitive level the proof of lemma 3.3.6 is nearly identical to
the proof of lemma 3.3.4. Instead of dividing the interval up into small intervals
and lifting each of these smaller intervals one at a time, one divides the square up
into small squares and lifts each small square one at a time. We choose to omit the
proof of lemma 3.3.6. It is nearly identical to the proof of lemma 3.3.4, but requires
most notation.
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3.3.2 Computation of fundamental group of the circle

Notation 3.3.8. Define a map φ : π1(S
1) → Z given by φ([α]) = α̃(1), where α̃ is

the lift of α given in lemma 3.3.4 with n = 0.

We will show that φ gives the desired isomorphism. Now there are several things
that we need to check:

• We need to check that φ did not depend on our choice of α.

• We need to show that φ is a homomorphism.

• We need to show that φ is a bijection.

We will carry out these checks in a sequence of claims below.

Claim 3.3.9. The map φ : π1(S
1)→ Z is well-defined.

Proof. We need to show that if α and β are based homotopic closed curves, then
α̃(1) = β̃(1). This will imply that φ did not depend on our choice of curve in the
homotopy class, that is, φ is well-defined.

Let H : I × I → S1 be the based homotopy from α to β. By lemma 3.3.6, there
exists a map H̃ : I × I → S1 such that

(1) π ◦ H̃ = H and

(2) H̃(0, t) = n

(3) H̃(1, t1) = H̃(1, t2) for all t1, t2 ∈ I.

Notice that H̃(s, 0) defines a lift of α. By the uniqueness in lemma 3.3.4, we have
that α̃(s) = H̃(s, 0). Similarly, β̃(s) = H̃(s, 1). Using condition (3), we have that

α̃(1) = H̃(1, 0) = H̃(1, 1) = β̃(1)

as desired.

Claim 3.3.10. The map φ : π1(S
1)→ Z is onto.

Proof. Let n ∈ Z. Define the curve γ̃n : I → R given by γ̃n(s) = n · s. Notice that
γn := π ◦ γ̃n satisfies

γn(0) = (cos(0), sin(0)) = (1, 0) = (cos(2πn), sin(2πn)) = γn(1)

Consequently, γn is a loop in S1. By the uniqueness of lemma 3.3.4, we have that
γ̃n is in fact the lift of γn to R. By definition of φ, we have that

φ([γn]) = γ̃n(1) = n.

It follows that φ is onto.
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Claim 3.3.11. The map φ : π1(S
1)→ Z is one-to-one.

Proof. Suppose that [α], [β] ∈ π1(S1) and φ([α]) = n = φ([β]). Consider the lifts
α̃ and β̃ to R. By definition, we have that α̃(0) = 0 = β̃ and α̃(1) = n = β̃(1).
Consider the homotopy H̃ : I × I → R given by

H̃(s, t) = (1− t) · α̃(s) + t · β̃(s)

that is, H̃ interpolates between α̃ and β̃. Now consider the homotopy H := π ◦ H̃.
Notice that

(1) H(s, 0) = π ◦ H̃(s, 0) = π ◦ α̃(s) = α(s)

(2) H(s, 1) = π ◦ H̃(s, 1) = π ◦ β̃(s) = β(s).

(3) H(0, t) = π ◦ H̃(0, t) = π((1− t) · α̃(0)− t · β̃(0)) = π((1− t) ·0 + t ·0) = π(0) =
(cos(0), sin(0) = (1, 0)

(4) H(1, t) = π ◦ H̃(1, t) = π((1− t) · α̃(1)− t · β̃(1)) = π((1− t) ·n+ t ·n) = π(n) =
(cos(2π · n), sin(2π · n)) = (1, 0)

It follows that H̃ is a based homotopy of closed curves from α to β. Consequently,
[α] = [β]. It follows that φ is one-to-one.

Claim 3.3.12. The map φ : π1(S
1)→ Z is a group homomorphism.

Proof. Let [α], [β] ∈ π1(S
1). By lemma 3.3.4, we have lifts α̃, β̃. We claim that

α̃ ? (α̃(1) + β̃) is the lift of α̃ ? β. Notice that α̃ ? (α̃(1) + β̃) is, in fact, a curve. Also

π ◦ α̃ ? (α̃(1) + β̃) =

{
π ◦ α̃(2s) 0 ≤ s ≤ 1/2

π ◦ (α̃(1) + β̃(2s− 1) 1/2 ≤ s ≤ 1

=

{
α(2s) 0 ≤ s ≤ 1/2

β(2s− 1) 1/2 ≤ s ≤ 1

It follows that

φ(α ? β) = (α̃ ? (α̃(1) + β̃)(1) = α̃(1) + β̃(1) = φ(α) + φ(β)

Now we can finally prove Remark 3.3.1

Proof. By notation 3.3.8 and section 3.3.2, we have a well-defined map φ : π1(S
1)→

Z. By claim 3.3.10 and section 3.3.2, φ is a bijection. By claim 3.3.12, φ is a
group homomorphism. Consequently, φ is an isomorphism and the desired result
follows.
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3.4 The Fundamental Theorem of Algebra

3.4.1 Real polynomials

Definition 3.4.1. A real polynomial of degree n is a function f : R→ R given by

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x
1 + a0

where ai ∈ R and an 6= 0.

Definition 3.4.2. A real root of a real polynomial f is a real number x0 ∈ R such
that f(x0) = 0

Remark 3.4.3. If x0 is a real root of a real polynomial of degree n, say f , then
f(x) = (x− x0) · g(x) for some real polynomial g of degree n− 1.

Remark 3.4.4. Unfortunately, there are not ”enough” real numbers. That is, not
every real polynomial has a real root over R. The most common example is the real
polynomial

f(x) = x2 + 1.

Indeed, if f(x0) = 0, then x20 = −1. However, the square of a real number is
always positive and thus not equal to −1. Consequently, f does not have a real
root. Not all hope is lost. We can instead introduce the formal symbol i and
demand that i2 = −1,that is, i =

√
−1 Then we would have that f(±i) = 0

and consequently f would have a root. Formally introducing
√
−1 and extending

multiplication and addition gives the complex numbers. As we will show in this
section, every polynomial defined over the complex numbers has a complex root.

3.4.2 Elementary complex analysis

Definition 3.4.5. The field of complex numbers, denote C, is the set

C = {(x, y) ∈ R× R} = {x+ iy | (x, y) ∈ R× R}.

The elements of this set are called complex numbers. The addition of two complex
numbers x1 + iy1 and x2 + iy2 is given by

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

The multiplication of two complex numbers x1 + iy1 and x2 + iy2 is given by

(x1 + iy1) · (x2 + iy2) = (x1 · x2 − y1 · y2) + i(x1 · y2 + x2 · y1)

The norm of a complex number z = x+ iy is given by

|z| =
√
x2 + y2.
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Remark 3.4.6. Notice that we can think of multiplying two complex numbers as
follows:

(x1 + iy1) · (x2 + iy2) = x1 · x2 + x1 · iy2 + iy1 · x2 + iy1 · iy2
x1 · x2 + x1 · iy2 + iy1 · x2 + i2y1 · y2
x1 · x2 + i(x1 · y2) + i(y1 · x2) +

√
−1

2
y1 · y2

x1 · x2 + i(x1 · y2 + y1 · x2)− y1 · y2
x1 · x2 − y1 · y2 + i(x1 · y2 + y1 · x2)

This uses the heuristic that i is just a formal symbol for
√
−1.

Remark 3.4.7. Notice that if x+ iy = z 6= 0, then we can make sense of dividing a
complex number by z. Indeed, let w = u+ iv where v, u ∈ R. Then

w

z
=
u+ iv

x+ iy
=
u+ iv

x+ iy
· x− iy
x− iy

=
(uiv)(x− iy)

x2 + y2
=
w(x− iy)

|z|2

Lemma 3.4.8. The norm |·| : C→ R satisfies the following for all complex numbers
z, w ∈ C:

(1) |z + w| ≤ |z|+ |w|,

(2) |z − w| ≥ |z| − |w|, and

(3) |zw| = |z||w|.
Proof. The first item is simply a restatement of the triangle inequality from Eu-
clidean geometry, that is, the any single side of a triangle is always less than or
equal to the sum of the lengths of the other two sides. Where we include ”degener-
ate” triangles that are given by having one edge overlapping with two edges that lie
in the same line in the plane. See figure 3.6 for an illustration of this equivalence.

The second item is simply a reworking of the first item. Indeed,

|z| = |(z − w) + w| ≤ |z − w|+ |w|

Subtracting |w| from both sides yields the desired result. The third item follows
from a direct computation. Write z = x+ iy and w = u+ iv.

|(x+ iy)(u+ iv)| = |(xu− yv) + i(xv + uy)|

=
√

(xu− yv)2 + (xv + uy)2

=
√
x2u2 − 2xyuv + y2v2 + x2v2 + 2xyuv + u2y2

=
√
x2u2 + y2v2 + x2v2 + u2y2

=
√

(x2 + y2)(u2 + v2)

=
√

(x2 + y2)
√

(u2 + v2)

= |z||w|
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Figure 3.6: A pictorial proof of the triangle inequality.

Remark 3.4.9. Notice that C is a topological space. By definition, it is homeo-
morphic to R2. Also, the real numbers are contained inside the complex numbers.
Namely, we have a map R → C given by x 7→ x + i · 0. So we can think of the
complex numbers as an extension of the real numbers. There is also a copy of S1

embedded in C just as there is in R2. Namely,

S1 = {x+ iy | |x|2 + |y|2 = 1} = {cos(2πθ) + i sin(2πθ) | θ ∈ [0, 1]}

Equivalently, S1 is the set of complex numbers that have norm equal to 1.

Definition 3.4.10. The exponential map, ez : C→ C is the function defined by

ez =
∞∑
n=0

zn

n!
.

Remark 3.4.11. Notice that the complex exponential map is defined in the same
manner as the real exponential map, that is, it is defined in terms of a convergent
Taylor series. If one hasn’t seen Taylor series before, then one should think of
definition 3.4.10 as follows: ez is approximated by a sequence of terms

z0

0!
,
z0

0!
+
z1

1!
,
z0

0!
+
z1

1!
+
z2

2!
, . . .
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As one adds on more correction terms, the total summation gets closer and closer to
the desired value. The successive terms that we add get smaller and smaller. Con-
sequently, the corrections get smaller and smaller and eventually our sum converges
to the desired value. Calculus is a way of making this rigorous. If one has seen
Taylor series, then it is possible that one has only seen them for real numbers and
real functions. However, the arguments from the real case carry over to the complex
case.

Lemma 3.4.12. We have the following equality

eiθ = cos(θ) + i sin(θ)

where θ ∈ R.

Proof. The proof uses the Taylor series for cos and sin. We compute

eiθ =
∞∑
n=0

(iθ)n

n!

=
∞∑
n=0

inθn

n!

=

∞∑
k=0

i2kθ2k

(2k)!
+

∞∑
`=0

i2`+1θ2`+1

(2`+ 1)!

=

∞∑
k=0

(−1)k
θ2k

(2k)!
+ i ·

∞∑
`=0

(−1)`
θ2`+1

(2`+ 1)!

= cos(θ) + i sin(θ)

where have substituted cos and sin for their respective Taylor series.

Remark 3.4.13. In light of lemma 3.4.12, we have that S1 ⊂ C is given by

S1 = {e2πiθ | θ ∈ [0, 1]}

So as θ increases, we sweep counter-clockwise around the circle. This gives us a
slightly more compact way of parameterizing the unit circle in C or R. This will
make our lives easier in the proof of the fundamental theorem of algebra.

Corollary 3.4.14. We have the following equality

eπi = −1
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3.4.3 Complex polynomials and the fundamental theorem of alge-
bra

Definition 3.4.15. A complex polynomial of degree n is a function f : C→ C given
by

f(z) = anz
n + an−1z

n−1 + · · ·+ a1z
1 + a0

where ai ∈ C, an 6= 0, and z = x+ iy.

Remark 3.4.16. Notice that a complex polynomial f : C → C is a continuous
function. The proof is essentially identical to the proof that a real polynomial is a
continuous function. One simply keeps track of the two components (x, y) for x+iy.

Definition 3.4.17. A complex root of a complex polynomial f is a complex number
z0 ∈ C such that f(z0) = 0

Remark 3.4.18. If z0 is a complex root of a complex polynomial of degree n, say f ,
then f(z) = (z − z0) · g(z) for some complex polynomial g of degree n− 1.

Theorem 3.4.19. Every complex polynomial of degree n has n (possibly non-distinct)
complex roots.

Proof. We break the proof up into parts.

(1) Consider a complex polynomial of degree n > 0, say

f(z) = anz
n + an−1z

n−1 + · · ·+ a1z
1 + a0.

and assume that an = 1.

(2) Suppose by way of contradiction that f has no complex roots. By definition,
f(z) 6= 0 for all z ∈ C. The polynomial f gives a map f : C→ C. We have a
map γ : I → S1 ⊂ C given by

γ(s) =
f(e2πis)/f(1)

|f(e2πis)/f(1)|

Notice that this map is continuous since we are never dividing by 0 (since we
have assumed that f(z) 6= 0 for all a ∈ C.).

(3) Consider the based homotopy of loops H : I × I → S1 given by

H(s, t) =
f(t · e2πis)/f(t)

|f(t · e2πis)/f(t)|

Notice that H is continuous since f(z) 6= 0 for all z ∈ C and consequently, we
do not divide by zero. We also have
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(a) H(s, 0) = f(0)/f(0)
|f(0)/f(0)| = 1

(b) H(s, 1) = γ(s)

(c) H(0, t) = f(t)/f(t)
|f(t)/f(t)| = 1

(d) H(1, t) = f(t)/f(t)
|f(t)/f(t))| = 1

Consequently, we have that γ is based homotopic to the constant loop. By
Remark 3.3.1, [γ] ∈ π1(S1) ∼= Z is equal to 0.

(4) Consider the function gt : C→ C given by gt(z) = tnf(z/t). We claim that gt
is non-zero for all z 6= 0 and for all t ∈ [0, 1]. Indeed,

gt(z) = zn + an−1t
1zn−1 + · · ·+ a1t

n−1z + a0t
n

If t = 0, then

g0(z) = zn 6= 0

and thus z 6= 0. If t 6= 0, then tnf(z/t) 6= 0 since both tn and f(z/t) do not
equal zero. Finally, we point out that gt is continuous.

(5) Consider the based homotopy of loops G : I × I → S1 given by

G(s, t) =
gt(e

2πis)/gt(1)

|gt(e2πis)/gt(1)|

Notice that G is continuous since ft(z) 6= 0 for all t ∈ [0, 1] and for all z ∈ C
with |z| 6= 0 and consequently, we do not divide by zero. We also have

(a) Using lemma 3.4.12,

G(s, 0) =
(e2πis)n

|e2πis)n|
= e2πnis = cos(2πns) + i sin(2πns)

(b) G(s, 1) = γ(s)

(c) G(0, t) = gt(1)/gt(1)
|gt(1)/gt(1)| = 1

(d) G(1, t) = gt(1)/gt(1)
|gt(1)/gt(1)| = 1

Consequently, we have that γ is based homotopic to the loop (cos(2πns), sin(2πns)).
By claim 3.3.10 and Remark 3.3.1, [γ] ∈ π1(S1) ∼= Z is equal to n.

(6) Combining the two results, we obtain that 0 = n. Consequently, n = 0 and f
must be the constant polynomial, a contradiction. It follows that f must have
a complex root.
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(7) Now consider the case where an 6= 1. Since an 6= 0, we may define g(z) =
f(z)/an, which is a complex polynomial of degree n. By the above work,
we may find a complex root z1 ∈ C such that g(z1) = 0. Consequently,
f(z1) = an · g(z1) = 0 and we have found our root for f .

(8) Consider the polynomial f1(z) = f(z)/(z− z1). This is a complex polynomial
of degree n − 1. We may again apply the above arguments to obtain a root
for f1, say z1, which will also be another root for f . We can set f2(z) =
f(z)/(z−z1)(z−z2), etc., continuing in this manner until we obtain that f(z)
has n (possibly non-distinct) complex roots.

3.5 Brouwer’s Fixed Point Theorem and Nash’s Equi-
librium Theorem

3.5.1 Brouwer fixed point theorem

As a warm-up, we will prove the Brouwer fixed point theorem for the 1-dimensional
disk, that is, an interval. Let’s first recall the intermediate value theorem from
calculus.

Theorem 3.5.1. Let f : I → R be a continuous map. If f(0) < f(1) and y satisfies
f(0) < y < f(1), then there exists an x ∈ I such that f(x) = y.

Theorem 3.5.2. If f : I → I is a continuous map, then there exists an x ∈ I such
that f(x) = x.

Proof. Consider the map g : I → R given by x− f(x). For all x ∈ I, we have that
0 ≤ f(x) ≤ 1. Consequently,

g(0) = 0− f(0) ≤ 0 ≤ 1− f(1) = g(1)

By Remark 3.5.1, there exists a point x ∈ I such that 0 = g(x) = x − f(x). It
follows that f(x) = x, as desired.

Now we graduate to the Brouwer fixed point theorem for the 2-dimensional disk.

Theorem 3.5.3. If f : D2 → D2 is a continuous map from the closed disk to itself,
then there exists (x, y) ∈ D2 such that f(x, y) = (x, y).

To prove ??, we need the following lemma that uses our computation of the
fundamental group of S1.

Lemma 3.5.4. Let i : S1 ↪→ D2 denote the inclusion of S1 as the boundary of D2.
There does not exist a continuous map r : D2 → S1 such that r ◦ i(x) = x for all x
in S1.



3.5. BROUWER’S FIXED POINT THEOREMANDNASH’S EQUILIBRIUMTHEOREM79

Proof. We apply proposition 3.2.20. If such a map r exists, then the composition
r∗ ◦ i∗ : π1(S

1)→ π1(S
1) is the identity map on fundamental groups. However, this

composition factors through the trivial group. Indeed, using proposition 3.2.24 and
Remark 3.3.1, we have that

π1(S
1)

i∗ //

=

��

π1(D
2)

r∗ //

=

��

π1(S
1)

=

��
Z // 0 // Z

In other words, for all integers n we have

n = id∗(n) = r∗(i∗(n)) = r∗(0) = 0

Consequently, we would have that r∗ ◦ i∗ is simultaneously the identity map and the
zero map on Z, a contradiction. It follows that no such r exists.

Now we prove Remark 3.5.3

Proof. Suppose by way of contradiction that f(x) 6= x for all x ∈ D2. Define a
map r : D2 → S1 given by sending x to the intersection point of the ray starting
at f(x) and directed towards x with the boundary of D2, that is, with S1. This
map is illustrated in figure 3.7. The map r is continuous. Indeed, if x and y
are arbitrarily close, then since f is continuous f(x) and f(y) will be arbitrarily
close. Consequently, their associated rays will be arbitrarily closed and thus their
intersection points with S1 will be arbitrarily close, as desired. Notice that r(i(x)) =
x since the ray from f(x) to x will meet S1 at x. However, we showed in section 3.5.1
that such a map r cannot exist, giving us a contradiction. Consequently, f(x) = x
for some x ∈ D2.

Remark 3.5.5. The Brouwer fixed point theorem holds for any disk of any dimension.
There is also a generalization of the Brouwer fixed point theorem to more arbitrary
topological spaces. This is the Leftshitz fixed point theorem. The proof of this
general case requires the machinery of homology. This machinery allows one to
define the Euler characteristic of more general topological spaces and elucidates
topological properties that are not seen by the fundamental group. We will most
likely not discuss this material in this class both due to time and difficulty.

3.5.2 Nash’s Equilibrium Theorem

The goal of this section is to define what Nash equilibriums are, prove that they
exist, and illustrate them via a small class of examples.

Definition 3.5.6. An N -player game is a tuple (A1, . . . , AN , u) where

• Ai is a finite set for each i.
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Figure 3.7: The map used in the proof of the 2-dimensional Brouwer fixed point
theorem.

• u : A1 × · · ·AN → RN is a function.

A mixed strategy for the ith player is a tuple (x1, . . . , x|Ai|) such that
∑

j xj = 1.

Remark 3.5.7. One can think of the data of definition 3.5.6 as follows. For each
player there is a finite set of strategies or moves that the player can implement.
These are listed in the Ai’s, that is, Ai is the set of strategies of the ith player. The
function u assigns to each selection of strategies the pay-off for each player. That
is, if ai ∈ Ai is a strategy for each i, then

u(a1, . . . , aN ) = (u1(a1, . . . , aN ), . . . , uN (a1, . . . , aN ))

and uj(a1, . . . , aN ) denotes the winnings of the jth player when the ith players make
the moves ai.

A mixed strategy is simply a statement of a player choosing to randomly play
strategy aj ∈ Ai xj percent of the time. Consequently, it is some combination of
strategies and thus mixed.

Remark 3.5.8. For the moment, we specialize to games with 2 players where each
player has 2-strategies. In this case, |Ai| = 2 for i = 1, 2. To specify a mixed
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strategy for player 1, we simply need to specify a number x ∈ [0, 1]. We obtain a
mixed strategy by playing the first strategy x percent of the time and the second
strategy 1 − x percent of the time. We may similarly specify a mixed strategy for
player 2 by choosing some y ∈ [0, 1].

Remark 3.5.9. We can represent the data of a 2 player, 2 strategy game via figure 3.8

Figure 3.8: A diagram that represents a 2-player, 2-strategy game.

Remark 3.5.10. We may extend the pay-off function u to a pay-off function for
mixed strategies. Namely, we set

u(x, y) = (u1(x, y), u2(x, y))

= (xyu1(1, 1) + x(1− y)u1(1, 0) + (1− x)yu1(0, 1) + (1− x)(1− y)u1(0, 0),

xyu2(1, 1) + x(1− y)u2(1, 0) + (1− x)yu2(0, 1) + (1− x)(1− y)u2(0, 0))

that is, we just take a weighted average of the pay-offs of the pure strategies in terms
of the percentages of the strategies that our players play.

Definition 3.5.11. A Nash equilibrium of a 2 player, 2 strategy game is a point
(x, y) ∈ I × I such that

u1(x, y) ≥ u1(0, y), u1(1, y)
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and
u2(x, y) ≥ u2(x, 1), u2(x, 1)

Remark 3.5.12. Essentially, a Nash equilibrium is a pair of mixed strategies such that
neither player benefits from unilaterally changing their strategy to a pure strategy,
that is, a strategy with x = 0 or x = 1 (similarly for y.).

Remark 3.5.13. Of course, one can extend the pay-off function to a pay-off function
for mixed strategies for arbitrary games (arbitrary number of players with arbitrary
numbers of strategies) and one similarly obtains a general definition of a Nash
equilibrium. We omit spelling this out here.

Theorem 3.5.14. Every N -player game has a Nash equilibrium.

Again, we will only handle the case of 2 players where both players have 2
strategies. But before discussing the proof, we give a couple of examples.

Example 3.5.15. Let’s consider a game between Warren and Biden. Suppose that
both have two strategies at their disposal. Spending money on advertising and
spending money on a rally. Suppose that if they both spend money on advertising,
then voters feel cynical about all the attack ads and thus politics in general. Con-
sequelty, both lose points in the polls. If one chooses to rally and the other chooses
to run ads, then the one that rallies will gain more poll points. If they both choose
to rally, then they will both gain an equal amount of poll points. This is expressed
by figure 3.9. Notice that both individuals rallying is a Nash equilibrium. However,
this is not the optimal solution. If both candidates were to cooperation and decide
to alternate running ads versus having rallies, then in the long run both candidates
would benefit more, gaining 2.5 points in the polls on average versus the 2 points
on average that the Nash equilibrium gives. However, in loss of cooperation both
candidates must take the strategy that will ensure that if their opponent chooses
another strategy, then they personally will not suffer, that is, they must choose the
Nash equilibrium.

Example 3.5.16. Suppose that two individuals are partners in crime and are ar-
rested for robbing a bank and stealing candy from a baby. The sentence time for
stealing candy from a baby is 1 year and the sentence time for robbing a bank is 3
years. The police house each individual separately. The police have enough evidence
to convict the individuals for the crime of stealing candy from a baby, but they do
not have sufficient evidence to convict the individuals for the crime of robbing a
bank. The individuals are unaware of what evidence the police have.

The police try to strike a deal with each individual. They tell each individual
that if they tell on their partner for the crime of robbing the bank, then they will
only serve 2 years in prison instead of the usual 3 regardless of what their partner
says. The individuals are aware that this deal has also been proposed to the other
partner. The game has players the two arrested individuals with strategies betray
the other partner or remain silent. This is given by figure 3.10.
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Figure 3.9: A diagram for a game on politics.

Notice that the Nash equilibrium is given by both individuals betraying. How-
ever, this is again not the optimal solution. Namely, both individuals should remain
silent. However, in light of not knowing the plan of the other individual, they are
both forced to pick the option that ensures the best return regardless of the other
players action. This is typically called the prisoner’s dilemma.

Example 3.5.17. As we noted above, we can make all of these definitions for multi-
player games. Consider the game with 100 players. Each is a driver that needs to
get from location A to location B. The payout is given by the number of minutes
that each driver must take to get from A to B. Suppose that the number of drivers
that choose a road influences the length of time that it requires to transverse said
road. We can represent this via figure 3.11.

Notice that the Nash equilibrium is achieved when all roads have the same
transversing time. On the left hand side, we see that the average time is 3.5 minutes.
On the right hand side, we need to do some algebra. Notice that there are three
paths on the right hand side as indicated in figure 3.12

Suppose that xi is the number of drivers that choose the ith path. Then the
costs of transversing the three paths are as follows:
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Figure 3.10: A diagram representing the prisoner’s dilemma.

• Path 1

3 +
x1 + x2

100

• Path 2

2 + ε+
x1 + 2x2 + x3

100

• Path 3

3 +
x2 + x3

100

This gives us two constraints. We have the additional constraint that x1 +x2 +x3 =
100. This gives us three equations and three unknowns. We solve and obtain that

x1 = 100ε = x3 x2 = 100− 200ε

Consequently, the travel time is

4− ε

Consequently, we see that adding the additional road only reduces travel time when
the road is actually longer than 1/2, which is slightly paradoxical. Moreover, if the



3.5. BROUWER’S FIXED POINT THEOREMANDNASH’S EQUILIBRIUMTHEOREM85

Figure 3.11: A description of a driving game.

Figure 3.12: Options in a driving game.

road is not longer than 1/2, then we have actually increased travel time by adding
the new road.

We now turn to the proof of Remark 3.5.14.

Proof. We break the proof up into parts.

• We introduce the following gain functions:

g01(x, y) = max{0, u1(0, y)− u1(x, y)}
g11(x, y) = max{0, u1(1, y)− u1(x, y)}
g02(x, y) = max{0, u2(x, 0)− u2(x, y)}
g12(x, y) = max{0, u2(x, 1)− u2(x, y)}

We see that gji represents the gain that player i achieves by unilaterally chang-
ing their strategy from x percent of their first strategy to j percent of their
first strategy. Notice that if gji (x, y) = 0 for all i and j, then by definition
(x, y) is a Nash equilibrium.

• We introduce a ”restrategize” function Ψ : I × I → I × I given by

Ψ(x, y) =

(
x+ g11(x, y)

1 + g01(1− x, y) + g11(x, y)
,

x+ g12(x, y)

1 + g02(x, 1− y) + g12(x, y)

)
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This function has the effect of moving x if there is any gain in unilaterally
switching to a particular strategy. Similarly for y. Consequently, if (x, y) is a
fixed point of Ψ, then there is no benefit to unilaterally changing strategy. By
construction, we should have that a fixed point of Ψ is a Nash equilibrium.
We check this.

• Since I × I is homeomorphic to D2, we may apply Brouwer’s fixed point
theorem to produce a fixed point of Ψ. Consequently, there exists (x, y) ∈ I×I
such that

(x, y) =

(
x+ g11(x, y)

1 + g01(1− x, y) + g11(x, y)
,

x+ g12(x, y)

1 + g02(x, 1− y) + g12(x, y)

)
Looking at the first equation in the pair, we have that

g11(x, y) = x(g01(1− x, y) + g11(x, y))

= x(u1(0, y)− u1(1− x, y) + u1(1, y)− u1(x, y))

= x(u1(0, y)− (1− x)u1(1, y)− xu1(0, y) + u1(1, y)− xu1(1, y)− (1− x)u1(0, y))

= x(u1(0, y)− u1(1, y) + u1(1, y)− u1(0, y))

= 0

Combining this with the equation above, we have that g01(x, y) must also equal
zero. This gives the desired result for the x component. The computation for
the y component is similar.

3.6 Borsuk-Ulam Theorem and Applications

Notation 3.6.1. Let S1 denote the set of points in R2 that are distance 1 from the
origin, that is,

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}

Given a point p = (x, y) ∈ S1, the antipodal point of p is the point −p = (−x,−y).

Notation 3.6.2. Similarly, let S2 denote the set of points in R3 that are distance
1 from the origin, that is,

S2 = {(x, y, z) ∈ R3 | s2 + y2 + z2 = 1}

Given a point p = (x, y, z) ∈ S2, the antipodal point of p is the point −p =
(−x,−y,−z).
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3.6.1 Borsuk-Ulam Theorem

The goal of this section is to give a proof of the Borsuk-Ulam theorem in dimension
two:

Theorem 3.6.3. If f : S2 → R2 is a continuous map, then there exists antipodal
points x and −x in S2 such that f(x) = f(−x).

Remark 3.6.4. Intuitively, this theorem says that there is a location on earth such
that the location on the opposite side of the globe has the same temperature and
humidity as said location. To see this, we can take f to be the function that
associates to a point on the globe its temperature and its humidity.

There is an analogous theorem in dimension one:

Theorem 3.6.5. If f : S1 → R is a continuous map, then there exists antipodal
points p and −p in S1 such that f(p) = f(−p).

The prove for the 1-dimensional case can be proven with basic knowledge about
the 0-dimensional topological features of S1 and S0 = {±1}.

Proof. Suppose by way of contradiction that f(p) 6= f(−p) for all p ∈ S1. Then we
can define a function g : S1 → {±1} given by

g(p) =
f(p)− f(−p)
|f(p)− f(−p)|

Since f(p) 6= f(−p) for all p, we have that we are not dividing by zero in the above
expression and consequently g is a continuous function. However, notice that

g(p) =
f(p)− f(−p)
|f(p)− f(−p)|

=
−(f(−p)− f(p))

| − (f(−p)− f(p)|
= −g(−p)

Consequently, g hits both −1 and +1. However, g is a continuous function and
thus cannot break S1 apart. Thus we have a contradiction, g must be simultaneous
continuous and not continuous. Consequently, our original assumption must have
been wrong and there exists p ∈ S1 such that f(p) = f(−p), as desired.

We now turn to the proof remark 3.6.4. To move up one dimension, we need to
understand the 1-dimensional topological features of S2 and S1.

Proof. We break the proof up into parts.

(1) Suppose by way of contradiction that f(p) 6= f(−p) for all p ∈ S2. We have
a continuous function (we are not dividing by zero by assumption!) g : S2 →
S1 ⊂ S1 given by

g(p) =
f(p)− f(−p)
|f(p)− f(−p)|

As above, we have that g(p) = −g(−p), that is, g sends antipodal points to
antipodal points.
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(2) Define a curve α : I → S2 by

α(s) = (cos(2πs), sin(2πs), 0).

This is the curve that wraps around the equator of the sphere. Define a curve
β : I → S1 by β(s) = g ◦ α(s).

(3) Since g(p) = −g(−p) this translates into the statement that

β(s+ 1/2) = g ◦ α(s+ 1/2) = g ◦ (−α(s)) = −g ◦ α(s) = −β(s)

That is β(s+ 1/2) is always on the opposite side of the circle from β(s).

(4) It follows that the lifts of β(s + 1/2) and β(s) to R (with starting point 0)
must always differ by a number of the form q/2 for q an odd integer. So we
have that

β̃(s+ 1/2) = β̃(s) + q/2

(5) It follows that

β̃(1) = β̃(1/2) + q/2 = β̃(0) + q/2 + q/2 = q 6= 0

Notice that α is homotopic to the constant loop in S2. So applying Re-
mark 3.3.1 and ??, we have that

0 6= q = [β] = g∗[α] = g∗[constant loop] = [constant loop] = 0

a contradiction. Consequently, there must exist a p ∈ S2 such that f(p) =
f(−p).

3.6.2 Dividing a sphere into three regions

Corollary 3.6.6. Let A1, A2, and A3 be subsets of S2 such that every point in S2

is contained in a unique Ai. There is an Ai and a point p ∈ S2 such that p and −p
are both in Ai.

Proof. Define a continuous map f : S2 → R2 given by

f(p) = (d1(p), d2(p))

where
di(p) = min{distance(q, p) | q ∈ Ai}

By remark 3.6.4, there exists a point p ∈ S2 such that

(d1(p), d2(p)) = f(p) = f(−p) = (d1(−p), d2(−p))
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If

d1(p) = 0 = d1(−p)

then p and −p must be in A1. Similarly, if

d2(p) = 0 = d2(−p)

then p and −p must be in A2. If

d1(p) 6= 0 6= d1(−p) d1(p) 6= 0 6= d1(−p)

then p and −p are in neither A1 nor A2. Consequently, p and −p must be in A3.
This proves the claim.

3.6.3 The Ham Sandwich Theorem

Definition 3.6.7. A plane in R3 is a subset of points P defined by

P = {(x, y, z) ∈ R3 | a(x−x0) + b(y− y0) + c(z− z0) = 0 with a, b, c, x0, y0, z0 ∈ R}.

Remark 3.6.8. A plane is simply a copy of R2 embedded in R3 that is ”not bent”.

Remark 3.6.9. Then a point (p) = (a, b, c) ∈ S2 determines a plane in R3 via

Lp = {(x, y, z) ∈ R3 | ax+ by + cz = 0}.

Lp is the plane that is perpendicular to the line passing through (a, b, c) and the
origin. Such a plane Lp comes with a notion of what is above it and what is below
it as determined by the point (a, b, c).

Theorem 3.6.10 (The Ham Sandwich Theorem). Let A1, A2, and A3 be three
pairwise disjoint regions on R3. There exists a plane P ⊂ R3 such that

vol(Ai ≥ P ) = vol(Ai ≤ P )

for i = 1, 2, 3, where vol(Ai ≥ P ) denotes the volume of Ai above P and vol(Ai ≤ P )
denotes the volume of Ai below P

Remark 3.6.11. Intuitively, Remark 3.6.10 says that given three regions in R3 there
exists a plane that simultaneously divides each of them in half (according to their
volumes). This theorem typically goes by the name of the Ham Sandwich Theorem.
The name is inspired by the situation of two pieces of bread and one piece of ham
(three regions in R3) being able to cut in half with one straight stroke of a knife
(divided by a plane in R3). This is the statement of Remark 3.6.10. The idea of the
proof is to combine the intermediate value theorem and the Borsuk-Ulam theorem
to produce the desired plane.
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Figure 3.13: A plane determined by a point on the 2-sphere.

Proof. We break the proof up into parts:

(1) Given a point p = (a, b, c) ∈ S2, we obtain a plane Lp as above. We may
translate the plane along the line going through the origin and p. We may do
this to obtain a translated plane Pp such that vol(A1 ≥ Pp) = vol(A1 ≤ Pp).
That is, we can translate Lp to obtain another plane Pp such that Pp divides
A1 in half. We can do this procedure for every p ∈ S2. One should notice that
this procedure is continuous with respect to p, that is, if we consider a point
p′ very close to p, then Pp′ will be a plane very close to Pp.

(2) Define a map f : R× S2 → R× R2 given by

f(λ, p) = (vol(A2 ≥ Pp), vol(A3 ≥ Pp))

This function is continuous because if we wiggle p we are just slightly changing
the plane in R3. Consequently, the amount that the volume above the plane
changes will also only minutely change.

(3) By remark 3.6.4, we have that there exists p ∈ S2 such that f(p) = f(−p).
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Chasing this, we find that

(vol(A2 ≥ Pp), vol(A3 ≥ Pp)) = f(p) = f(−p) = (vol(A2 ≥ P−p), vol(A3 ≥ P−p))

However, by construction, P−p is the same plane as Pp but just with the notion
of what is up/down flipped. Consequently,

vol(Ai ≥ P−p) = vol(Ai ≤ Pp)

(4) Combining this with the above equation says that Pp divides A2 and A3 in
half. But by our previous construction, we also know that Pp divides A1 in
half. Therefore, we conclude that Pp is the desired plane, that is, it is a plane
that divides each of the Ai in half.

Remark 3.6.12. There are higher dimensional analogues of the Ham Sandwich the-
orem as well as an analogue in dimension 2. To prove this generalized form one
has to prove a generalization of the Borsuk-Ulam theorem for higher dimensional
spheres. The easiest way to prove this generalization is to introduce the machinery
of homology. As we remark in remark 3.5.5, the machinery of homology is beyond
the scope of this course.
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Chapter 4

3-Manifolds and Knots

4.1 Higher dimensional topological spaces

4.1.1 The quotient topology

Definition 4.1.1. An equivalence relation on a set S is a comparison ∼ that satis-
fies:

• (Reflexive) x ∼ x

• (Symmetric) x ∼ y implies that y ∼ x

• (Transitive) x ∼ y and y ∼ z implies that x ∼ z.

where x, y, z ∈ S. If x ∼ y, then we say that x is equivalent to y.

Remark 4.1.2. Intuitively, an equivalence relation on a set is a way of breaking that
set up into partitions/groups. Two elements are placed in the same partition/group
if they are equivalent.

Example 4.1.3. We have seen some examples of equivalence relations already:

• S = set of curves in a space X. α ∼ β if α is homotopic to β.

• S = topological spaces. X ∼ Y if X is homeomorphic to Y .

We can also give other trivial examples:

• S = people in the world. Two people are equivalent if they have the same
number of fingers.

• S = days of the week. Two days are equivalent if they are both weekdays.

Definition 4.1.4. Let S be a set with an equivalence relation ∼. The quotient of
S by ∼ is the set of equivalence classes [x] where

[x] = {y ∈ S | y ∼ x}

93
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Remark 4.1.5. Intuitively, the quotient of a set by a relation is just the set whose
elements are the partitions determined by the equivalence relation. In other words,
we identify elements in S that are equivalent. This is best illustrated through
examples.

Example 4.1.6. Using the examples from example 4.1.3, we have

• S/ ∼= {0, . . . , 10, 11, . . . , 15}. According the the Guinness World Record’s,
Akshat Saxena has 14 fingers.

• S/ ∼= {Saturday, Sunday, Weekdays}

Recall that a topological space X is a set along with a notion of when two points
in the set are nearby. If our topological space’s underlying set has an equivalence
relation on it, then we may use it to define a new topological space.

Definition 4.1.7. Let X be a topological space. Let ∼ be an equivalence relation
on the underlying set X. The quotient space of X by ∼ is the topological space with
underlying set X/ ∼. We say that [x], [y] ∈ X/ ∼ are close if there exists z, w ∈ X
with z ∼ w, x′ ∼ x and y′ ∼ y such that x′ is close to z and y′ is close to w.

Remark 4.1.8. Intuitively, when we quotient a space by an equivalence relation, we
are just identifying points that are equivalent. Again, this is best illustrated through
examples. We will see many of them in the following sections of this chapter.

Example 4.1.9. Consider the interval [0, 1] as a topological space. We impose an
equivalence relation on [0, 1] by say that x ∼ y if and only if x, y ∈ {0, 1}. The
quotient space [0, 1]/ ∼ is homeomorphic to the circle. Indeed, the equivalence
relation has the effect of identifying 0 and 1, that is, we glue the two ends together
to obtain the circle.

Definition 4.1.10. The cone of a topological space X is the quotient space X×I/ ∼
where (x, t) ∼ (y, s) if and only if t = 1 = s.

This is best illustrated via an example.

Example 4.1.11. The cone on the circle is homeomorphic to the disk. Similarly,
the cone on S2 is homeomorphic to the 3-dimensional ball.

Definition 4.1.12. The suspension of a topological space X is the quotient space
X × I/ ∼ where (x, t) ∼ (y, x) if and only if t = 1 = s or t = 0 = s.

Again this is best illustrated via an example.

Example 4.1.13. The suspension of the circle is homeomorphic to S2. The sus-
pension of the disk is the 3-dimensional ball.
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4.1.2 Simplicial complexes

Definition 4.1.14. The n-simplex is the space

∆n = {(x0, . . . , xn) ∈ Rn+1 |
∑
i

xi = 1

Remark 4.1.15. These simplicies are familiar spaces:

• ∆0 is a point.

• ∆1 is an edge.

• ∆2 is a triangle.

• ∆3 is a tetrahedron.

In particular, we have that ∆n is homeomorphic to the cone of ∆n−1.

Definition 4.1.16. A simplicial complex is the topological space obtained from a
gluing of copies of ∆n for various n, where gluing means that we identity edges with
edges, faces with faces, ..., n-dimensional faces with n-dimensional faces, etc. We
further impose that we do not glue any simplies to themselves.1.

Remark 4.1.17. One should think of a simplicial complex as a higher dimensional
generalization of polygonal copmlexes that only uses generalized triangles.

4.1.3 Manifolds

Definition 4.1.18. A manifold is a topological space X such that for each x ∈ X
there exists a local homeomorphism f : Bn → X where

Bn = {(x1, . . . , xn) ∈ Rn |
∑
i

x2i < 1}

and f(0) = x. We call X an n-dimensional manifold.

Remark 4.1.19. Intuitively, a manifold is a topological space such that about every
single point the space looks like an open ball in Rn.

We now give manifold examples of manifolds.

Example 4.1.20. We have already seen the following examples of manifolds:

(1) S1 is a 1-dimensional manifold

(2) S2 is a 2-dimensional manifold

1This is technically an incorrect definition of a simplicial complex. Technically, this is a hybrid
of the definition of a simplicial complex and an object called a ∆-complex
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(3) Surfaces are 2-dimensional manifolds

(4) Rn is an n-dimensional manifold

Example 4.1.21. Consider the set of points

Sn = {(x0, . . . , xn) ∈ Rn+1 |
∑

x2i = 1}

This space is known as the n-sphere. We claim that Sn is an n-dimensional manifold.
First, notice that via rotating Sn we can take any neighborhood of any one point to
a homeomorphic neighborhood of any other point. Consequently, it suffices to check
the local condition for the point (1, 0, . . . , 0). Consider the map f : Bn → Rn+1

given by

f(y1, . . . , yn) =

√1−
∑
i

y2i , y1, . . . , yn


It is not too hard to see that this is a homeomorphism. Essentially, all we have
done is written a part of the Sn sphere as the graph of some function. One should
think about the case of S1 and writing the top part of the circle as the graph of the
function

√
1− s2. We have done nothing beyond simply generalizing the to higher

dimensions.

Example 4.1.22. We consider Rn+1 − origin with the equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn)

if and only if there exists λ ∈ R− {0}, a non-zero real number, such that

(λx0, . . . , λxn) = (y0, . . . , yn).

This defines an equivalence relation and consequently we may form the quotient
space RPn := (Rn+1 − origin/ ∼. As a set RPn is the set of straight lines through
the origin in Rn+1. We denote the equivalences classes of points by [x0 : · · · : xn].
We claim that RPn is an n-dimensional manifold. We have functions fi : Rn → RPn
for 0 ≤ i ≤ n given by

fi(x1, . . . , xn) = [x1 : · · · : xi−1 : 1 : xi : · · · : xn]

A little bit of work shows that every point in RPn is contained in the image of one
of these fi and more over each fi is a local homeomorphism.

Definition 4.1.23. Let X and Y be topological spaces. The product of X and Y
is

X × Y = {(x, y) | x ∈ X and y ∈ Y }

We say that (x, y) is close to (x′, y′) if and only if x is close to x′ and y is close to
y′.
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Proposition 4.1.24. If X is an n-dimensional manifold and Y is an m-dimensional
manifold, then X × Y is an (n+m)-dimensional manifold.

Proof. The product of two open balls Bn × Bm is homeomorphic to an open ball
Bn+m. So given (x, y) ∈ X × Y , we obtain a local homeomorphism φ : Bn+m →
X × Y about (x, y) as follows:

• Let f : Bn → X be the local homeomorphism about x in X

• Let g : Bn → X be the local homeomorphism about y in Y .

Define φ(s, t) = (f(s), g(t)). This gives the desired result.

Example 4.1.25. The n-dimensional torus is the n-dimensional manifold Tn :=
S1 × · · · × S1 composed of n copies of S1. In the case of n = 2, we obtain the torus
from before.

4.2 3-Manifolds

4.2.1 Definition and handlebody decompositions

Definition 4.2.1. A 3-manifold is a topological space X such that for each point
x ∈ X there exists a local homeomorphism f : B3 → X with f(0, 0, 0) = x.

Remark 4.2.2. As we have observed before, a 3-manifold is a topological space that
locally looks like R3, that is, it is intriscially 3-dimensional everywhere.

Example 4.2.3. We have already seen several examples of 3-manifolds in sec-
tion 4.1.3.

(1) S3 = {(x, y, z, w) ∈ R3 | x2 + y2 + z2 +w2 = 1} is a 3-manifold. It is known as
the 3-sphere. One helpful way to visualize S3 is as the 1-point compactification
of R3. To understand this, let’s try to first understand why S2 is the 1-point
compactification of R2. Given the sphere, we can remove the north pole and
lay the rest of the sphere flat onto the R2. One can do a similar procedure
with S3. That is, remove the north pole, that is, (0, 0, 0, 1) and notice that
the resulting space is homeomorphic to R3.

(2) Any product of a surface with a circle is a 3-manifold. That is X × S1 is a
3-manifold when X is a surface.

(3) RP3 is a 3-manifold. This was the space whose points were given by lines in
R4.

Definition 4.2.4. A handlebody is a small uniform thickening of a graph embedded
in R3.
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Remark 4.2.5. Let’s try to understand what definition 4.2.4 means. If we have a
graph in R3, then it is a collection of edges glued together. If we slightly thicken an
edge, then it will look like a solid cylinder. Consequently, the handlebody will be a
”graph” where instead of gluing together edges, we glue together cylinders in a nice
manner. Perhaps a better way to picture a handlebody is as a ”filled in surface”.
A torus (an inter-tube) is a surface. The solid donut is a handlebody. It is the
handlebody obtained from ”filling in” the torus. In fact, every handlebody is given
by a filled in orientable surface.

Definition 4.2.6. The genus of a handlebody W is the genus of the orientable
surface S that it fills in. We write g(W ) = g(S) for the genus.

Example 4.2.7. Given two handlebodies W1 and W2 with g(W1) = g(W2), we can
form a new 3-manifold. Let the boundary of Wi be the surface Si. Since

g(S1) = g(W1) = g(W2) = g(S2)

by Remark 2.5.1, we have that S1 is homeomorphic to S2. Now pick a homeo-
morphism f : S1 → S2. We define an equivalence relation on the disjoint union
W1 tW2 by saying x ∈ W1 is equivalent to y ∈ W2 if and only if x ∈ S1, y ∈ S2,
and f(x) = y. Taking the quotient topology, we obtain a new space, which is a
3-manifold, say M . This is space obtained from essentially gluing the boundary of
W1 to the boundary of W2 via f . Notice that Wi is not a 3-manifold because of the
points in the boundary. Locally about these points it looks like half of an open ball,
which is not an open ball. However, if we glue W1 to W2, then locally we are gluing
half balls to half balls to obtain whole balls. Thus producing a 3-manifold, say M .
We say that M is given by a handlebody decomposition.

As it turns out, the procedure in example 4.2.7 produces all 3-manifolds. To
prove this, we first need the following theorem.

Theorem 4.2.8. Every 3-manifold is homeomorphic to a simplicial complex com-
posed of some number of 0, 1, 2, and 3 simplicies.

Essentially, ?? states that every 3-manifold is triangulated. We can break it up
into some number of simplicies. This is the analogue of the theorem from surfaces
that says that every surface may be written as a polygonal complex.

Definition 4.2.9. A 3-manifold is compact if it is homeomorphic to a simplicial
complex composed of a finite number of simplicies.

Theorem 4.2.10. Every compact 3-manifold is given by a handlebody decomposi-
tion.

Proof. Let X be a 3-manifold. By Remark 4.2.8, X admits a triangulation. Let Γ
denote the graph given by the edges of the triangulation.
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We can construct a different graph Γ′ in X given this triangulation. At the
center of each tetrahedron (each 3-simplex) we place a vertex. We adjoint two of
these vertices by an edge if the associated 3-simplicies share a common 2-simplex,
that is, they are glued together along a face. By construction, this new graph is
disjoint from the graph determined by the edges of the triangulation.

We may slowly thickening Γ and Γ′ in X until we have filled all of X with these
thickenings. But recall that a small thickening of a graph produces a handlebody.
Consequently, Γ and Γ′ determine handlebodies W and W ′ in X such that X is
obtained from gluing W to W ′ along their boundaries. Consequently, we have give
a handlebody decomposition of X.

4.2.2 Surgery

Using the underlying idea of handlebody decompositions, we can come up with a
method for altering a 3-manifold to produce a new 3-manifold. To do so, we should
first understand homeomorphisms of the torus.

Definition 4.2.11. The Dehn twist of the cylinder is a map τ : S1 × [0, 2π] →
S1 × [0, 2π] given by

τ(θ, t) = (t+ θ, t)

where θ denotes the angle on the circle component and t ∈ [0, 2π].

A Dehn twist of a cylinder is simply a twisting/screwing of the cylinder. It is
important to note that the Dehn twist of the cylinder leaves the end circles fixed!

Figure 4.1: The Dehn twist of a cylinder.

Recall that given a simple closed curve in a surface, we can take a small thick-
ening of the curve to produce an embedded cyclinder in the surface whose middle
circle is the simple closed curve.

Definition 4.2.12. Let γ be a simple closed curve in the torus T 2. Let S1× [0, 2π]
be the embedded cylinder in X containing γ (so γ = {(θ, π)} ⊂ S1 × [0, 2π]. The
Dehn twist about γ is the homeomorphism τγ : T 2 → T 2 given by

τγ(x) =

{
x x 6∈ S1 × [0, 2π]

τ(x) x ∈ S1 × [0, 2π]

where τ is the Dehn twist of the cylinder above.
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Figure 4.2: The Dehn twist on a torus.

Notice that τγ is a continuous map since the Dehn twist of the cylinder fixes the
end points of the cylinder. One can check that the Dehn twist of the cylinder is a
homeomorphism and use this to show that the Dehn twist about a simply closed
curve γ in T 2 is a homeomorphism.

Fact 4.2.13. Every homeomorphism2 of T 2, say f : T 2 → T 2, may be written as a
product of Dehn Twists. That is, there exists simply closed curves γ1, . . . , γn such
that

f = τγ1 ◦ · · · ◦ τγn

The proof the fact 4.2.13 is elementary; however, it is beyond the scope of this
course. So we simply take it as a fact.

Definition 4.2.14. A knot is a simple closed curve K : S1 → S3. That is, α is
a one-to-one map that is homotopic to a curve given by a sequence of edges in a
triangulation in S3. A link is a collection of pairwise disjoint knots, denoted L.

Remark 4.2.15. Let L be a link in S3 with associated knots K1, . . . ,Km. A small
thickening of the image of each knot gives a collection of disjoint genus one handle
bodies, that is, m disjoint filled in tori. Denote these by W1, . . . ,Wm. Pick home-
omorphism f1, . . . , fn of T 2. Let Y1, . . . , Ym denote m genus one handle bodies, ie,
filled in tori. We may remove W1, . . . ,Wm from S3 and glue in Y1, . . . , Ym using the
homeomorphisms f1, . . . , fm. So we remove a solid torus and then glue it back in a
different manner. This produces a possibly different manifold. The result is called
a Dehn surgery along the link L in S3.

Theorem 4.2.16. Let X be a 3-manifold. There exists a link L ⊂ S3 such that
a Dehn surgery along the link L in S3 produces X. That is every 3-manifold is
produced from a Dehn surgery along a link in S3.

Using Remark 4.2.16, we can show that the collection of all 3-manifolds is
listable/countable.

2up to a natural notion of equivalence (a form of homotopy equivalence of maps)
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Definition 4.2.17. Two simple closed curves α and β in X are isotopic if there
exists a homotopy H : I × I → X such that

H(s, 0) = α(s) H(s, 1) = β(s)

and H(s, t) is a simple closed curve for each t.

Intuitively, an isotopy is simply a homotopy where we can deform α to β with
out crossing over the curve (introducing an introduction) during the deformation.

Corollary 4.2.18. The collection of all 3-manifolds is listable.

Proof. One shows that Dehn surgery along a link does not depend up to homeo-
morphism on the link up to isotopy, that is, doing Dehn surgery along links that are
isotopic produces homeomorphic 3-manifolds. Using that every link is representable
via a knot diagram (see discussion in next section), one can show that there is a
countable number of links in S3 up to isotopy. Consequently, there is a countable
number of links that we need to perform surgery along. Finally, one can show that
all homeomorphisms of T 2 can be written as products of Dehn twists about just
two curves. Consequently, there is a countable number of combinations of gluing
that we can perform on each link. On the whole, we have that there is a countable
number of operations that we can do to S3 to produce 3-manifolds.

The two above results are in the spirit of the classification of surfaces theorem.
For surfaces, connect summing gave us a way of taking a surface and produce a new
surface. The classification of surfaces theorem said that if we started with a sphere
and performed these finite number of operations (connect summing with a torus or
a real projective plane), then we could obtain all surfaces. The above theorems say
that there are a countable number of ways of modifying the 3-sphere to produce all
possible 3-manifolds.

4.3 Knot Theory

Knot theory is the study of knots or links in S3 (and sometimes in more general
3-manifolds). In light of Remark 4.2.16, knot theory is largely concerned with the
following two questions.

Question 4.3.1.

How do you tell when two isotopic knots are the same?

How do you list all possible knots?

The way to attempt to go about answering these questions is to associated
invariants to knots. If the invariants are sufficient rich, then they can be used to
distinguish different types of knots and be used to list different kinds.
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Figure 4.3: Some examples of knots.

4.3.1 Knot Complements

Perhaps the richest knot invariant that we have is the complement of the knot.

Definition 4.3.2. Let K ⊂ S3 be a knot. The knot complement of K is the
space obtained from removing a small thickening of K from S3. We denote this
complement by C(K).

Theorem 4.3.3. [Gordon-Luecke] If C(K) is homeomorphic to C(K ′), then K is
isotopic to K ′.

One can study the fundamental group of C(K).

Theorem 4.3.4. π1(C(K)) = Z if and only if K is the unknot.

Proof. The forward direction is extremely difficult. However, the reverse direction
is a fun mental exercise. Let’s arrange the knot in S3 as a great circle. Viewing S3

as the one point compactification of R3 gives that our unknot is the x-axis along
with the point at infinity. Now we can contract this space down to look like an
infinity cylinder and then further contract that down to a circle. It follows that the
fundamental group of the complement is Z.

Unfortunately, Remark 4.3.4 only tells us whether a knot is the unknot or not.
In general, non-equivalent knots can have the same knot groups.
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4.3.2 Knot diagrams

Definition 4.3.5. A knot diagram of a knot K ⊂ S3 is a projection of the knot to
R3 given in terms of arcs in the plane that meet at under/over crossings.

Notice that a knot can admit multiple knot diagrams depending on how we
arrange the knot (up to isotopy). Namely, one diagram can have redundant crossings
introduced. Thankfully, any two diagrams for a given knot differ in a very precise
manner. Namely, they differ by a sequence of Reidemeister moves.

Definition 4.3.6. A Reidemeister move is an alteration of a knot diagram given
by one of the following operations:

Figure 4.4: The Reidemeister moves.

Intuitively, Reidemeister moves are just ways of wiggling our knot in terms of
the knot diagram.

Theorem 4.3.7. Any two knot diagrams represent the same knot if and only if one
diagram can be transformed to the other via a sequence of Reidemeister moves.

Proof. Suppose that the diagrams are related by a sequence of Reidemeister moves,
then realizing the Reidemeister moves in R3 gives the isotopy between the knots and
thus they must be the same. Conversely, if two diagrams represent the same knots
then the knots are isotopic. Projecting this isotopy down into the plane amounts to
moving one knot diagram to the other via some rearranging, one can check that all
possible changes must be Reidemeister moves.
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4.3.3 Connected sums of knots

Definition 4.3.8. A oriented knot is a knot along with a choice of direction on the
curve.

Definition 4.3.9. The connect sum of two oriented knots K and K ′ is the oriented
knot obtained from aligning two arcrs in the knot diagrams of K and K ′ and per-
forming the surgery illustrated in figure 4.5, connecting the outgoing string of one
knot with the incoming string of the other and vise versa. We write K#K ′ for the
connect sum.

Figure 4.5: The connect sum of two knots.

Remark 4.3.10. Notice that the definition of connect sum relies on the orientations.

One can think of taking the connect sum of K with K ′ as follows: Suppose that
we have a shoe lace. We can knot this lace to be K, then connect summing with K ′

says that we untie our final connection and then further tie our lace as prescribed
by K ′. So taking a connect sum corresponds to a further tieing of a knot.

Theorem 4.3.11. If K is not the unknot, then K#K ′ is not the unkot for all knots
K ′.

Intuitively, Remark 4.3.11 says that we can’t further tie a knot in such a manner
that unties it. That is, we can’t unknot a knot by further knotting it.
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Recall the following ”argument” from calculus using series:

1 = 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = (1− 1) + (1− 1) + (1− 1) + · · · = 0

Of course, this is non-sense since the above defined series do not converge. However,
this idea can be used in other areas of mathematics to prove interesting results, as
we will do here. This trick typically goes by the name Mazur’s swindle

Proof. Suppose by way of contradiction that K#K ′ is the unknot for some knot
K ′, then

unknot = (K#K ′)#(K#K ′)# · · · = K#(K ′#K)#(K ′#K)# · · · = K

a contradiction. We need to argue that this infinite chain of connect sums is well-
defined. Technically, what we have created is not a knot. Instead we need to work
with infinite chains of knots. We can view the infinite connect sum as a map R→ R3

as follows, see figure 4.6

Figure 4.6: The representation of an infinite connect sum of knots.

We say that two of these chains of equivalent if there exists an isotopy between
the two copies of R that sends infinity to infinity, that is, H : R × I → R3 such
that H(x, 0) = γ1(x), H(x, 1) = γ2(x, 1), and limx→±∞H(x, t) = ±∞ for each t.
Now using the grouping argument above one can explicitly write down an isotopy
that takes the line knotted with a single K to the straight line. Consequently, K is
isotopic to the unknot. This completes the proof.

The punch-line is that in calculus we can’t always make sense of infinite sums
of numbers; however, in topology we can make sense of infinite concatenations of
homotopies/isotopies, which allows arguments like this to become rigorous.



106 CHAPTER 4. 3-MANIFOLDS AND KNOTS

4.3.4 Seifert genus

Given a knot in S3, we can ask if there is an oriented surface with boundary in S3

whose boundary is the knot. Such a bounding surface is called a Seifert surface.

Proposition 4.3.12. Given a knot K in S3 there exists a surface with boundary in
S3 whose boundary is the knot K.

Proof. The proof is via a brute force construction and goes by the name of Seifert’s
algorithm.

(1) pick a direction for the knot.

(2) At each crossing alter the diagram as figure 4.7

Figure 4.7: A resolution of a crossing.

(3) This produces a collection of disjoint circles with direction on them in R2.
Each circle bounds a disk. Notice that we may have nested circles. However,
using the fact that our knot lives in R3, we can lift such nested disks up away
from the plane so they do not meet. Specifically, the smallest disk gets lifted
the highest, then the next smallest disk, etc.

(4) Using the prescription given by the pre-resolved crossings we can glue these
disks together by adding in twisted strips. See figure 4.8. This produces a
surface with boundary whose boundary is the knot.

(5) Being careful about which way one resolves the crossings, one can ensure that
the resulting surface is oriented (we omit these details/leave them as a difficult
exercise).

Given proposition 4.3.12, we can make the following definition.

Definition 4.3.13. The Seifert genus of a knot K, denoted g(K), is the minimum
genus of oriented surfaces with boundary in S3 whose boundary is K.
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Figure 4.8: A gluing in a twisted strip.

Proposition 4.3.14. A knot K is the unknot if and only if g(K) = 0.

Proof. If K is the unknot, then clearly g(K) = 0. The converse is surprisingly non-
trivial. The idea is that the existence of the disk says that the curve can be shrunk
to a point without crossing itself. Making this precise and cooking up an explicit
isotopy requires some work.

Proposition 4.3.15. g(K#K ′) = g(K) + g(K ′).

Proof. We need to show that

g(K#K ′) ≤ g(K) + g(k′)

To see this, we notice that we can produce the Seifert surface for K#K ′ from the
minimal Seifert surfaces of K and K ′ by connecting these two surfaces via a strip
adjoining their two boundaries to each other. This added strip corresponds to the
surgery that we did to produce the connect sum. Now we need to show that

g(K#K ′) ≥ g(K) + g(K ′)

Suppose that Σ is the minimal Seifert surface for K#K ′. We can find a sphere in
R3 that separates K#K ′ into the pieces K and K ′. We can wiggle our sphere in
such a manner that the sphere and Σ only meet along a collection of closed curves
and arcs (that is, 1-dimensional spaces).

This is the generalization of the idea that two planes in R3 intersect in a line.
If they meet in circles, then we can push/pull the sphere to remove the closed

curve (this requires a little bit of care!). The only arcs occur when both Σ and
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the deformed sphere meet K#K ′. But the sphere only meets K#K ′ at two points.
Consequently, we have arranged our deformed sphere to divide Σ into two surfaces
adjoined at their boundaries by a strip. That is, we have produce Seifert surfaces
for K and K ′. Consequently, the sum of their genera is bounded by the genus of
Σ.

Corollary 4.3.16. If K is not the unknot, then K#K ′ is not the unknot for all
knots K ′.

Proof. Since K is not the unknot, by proposition 4.3.14, g(K) 6= 0. Suppose by way
of contradiction that K#K ′ is the unknot for some K ′. By proposition 4.3.15,

0 = g(K#K ′) = g(K) + g(K ′) > 0

a contradiction.

Exercise 4.3.17. Show that there exists infinitely many knots. (Hint: what can
you say about taking the n-fold connect sum of a knot with itself versus the m-fold
connect sum of a knot with itself.)

4.3.5 Prime Decomposition of Knots

Definition 4.3.18. A knot P is prime if it can not be written as a connect sum
P = K#K ′ for knots K and K ′, which are not unknots.

The term prime is inspired from how positive integers behave. A positive integer
is prime if it can not be written as m ·n for m 6= 1 6= n. Consequently, 1 corresponds
to the unknot and prime numbers correspond to prime knots.

The goal of this subsection is to prove the following:

Theorem 4.3.19. Let K be a knot. Suppose that

K = P1#P2# · · ·#Pn

and

K = Q1#Q2# · · ·#Qm

where Pi and Qj are prime knots. Then n = m and each Pi is equal to a unique Qj.

Theorem 4.3.19 says that a knot can be written uniquely as a connect sum of
prime knots up to the order that we perform the connect sum (note, that connect
sum is commutative! So ordering really doesn’t matter). This is analogous to the
decomposition theorem of positive integers, which says that every integer can be
uniquely written as a product of prime up to switching the order of multiplication.

Proving Remark 4.3.19 will require a bit of work. We build up to its proof via
a sequence of lemmas/observations.
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Lemma 4.3.20. A knot of genus one is a prime knot.

Proof. Suppose by way of contradiction that g(K) = 1 and K = K ′#K ′′ with K ′

and K ′′ both not the unknot. By proposition 4.3.15, we have that

1 = g(K) = g(K ′) + g(K ′′)

Since the genus of a knot is non-negative, we must have that g(K ′) = 0 (switching
K ′ with K ′′ if necessary). By proposition 4.3.14, K ′ is the unknot, a contradiction.
Consequently, K must be prime.

Lemma 4.3.21. Every knot can be expressed as a finite connect sum of prime knots.

Proof. Consider a knot K. If K is prime, then we are done. If K is not prime, then
we may write K = K ′#K ′′. By proposition 4.3.15, we have that

g(K ′) + g(K ′′) = g(K)

If K ′ and K ′′ are prime, then we are done. If not, then we repeat this procedure.
Namely, we write K ′ as a connect sum of two knots and similarly for K ′′. And then
we further repeat. We must eventually produce prime knots since this procedure
decreases the genus. So eventually, our knots will have to be prime simply because
they will have genus equal to one (lemma 4.3.20). The end result is a decomposition
of K as a finite sum of prime knots.

#

Lemma 4.3.22. If K1#K2 = K = P#K3 and P is prime, then either

(1) K1 = P#K ′1 with K3 = K ′1#K2.

(2) K2 = P#K ′2 with K3 = K1#K
′
2.

Proof. This proof is slightly technical. We just aim to illustrate the main idea. Pick
a sphere S1 that divides K along K1 and K2. Pick another sphere S2 that divides
K along P and Q. After wiggling, we can ensure that the two spheres meet in a
collection of loops. We would like to deform S2 such that we remove all of these
loops and preserve the splitting of K along P and Q. If we can do this, then we will
have that either K1 or K2 may be written as a connect sum with P and another knot
K ′i such that the statement holds. To employ this deforming/pushing off strategy,
one uses the fact that P is prime. Essentially, if one could not push off a circle
while perserving the decomposition, then P would be writable as a connect sum,
contradicting the fact that P is prime.

Corollary 4.3.23. If P#K1 = P#K2 and P is prime, then K1 = K2.

Proof. This follows from lemma 4.3.22. Exercise.



110 CHAPTER 4. 3-MANIFOLDS AND KNOTS

We can now prove the prime decomposition theorem for knots.

Proof. Suppose that
K = P1#P2# · · ·#Pn

and
K = Q1#Q2# · · ·#Qm

By lemma 4.3.22, we have that

Q1 = P1#stuff P2 + · · ·Pn = stuff#Q2# . . . Qm

or
Q2 + · · ·+Qm = P1 + stuff P2# . . . Pn = Q1#stuff

If the former, then since P1 and Q1 are prime, we must have that the stuff is the
unknot and P1 = Q1. Now apply corollary 4.3.23 to obtain that

P2# · · ·Pn = Q2# · · ·Qm

and repeat. If the latter, we repeat with K replaced by Q2+. . . , Qm = P1#stuff and
since we can only repeat this a finite number of times, eventually we must find that
P1 = Qj for some j (that is, eventually the former case happens in the procedure.)
Consequently, we can cancel P1 with Qj and again repeat the procedure with the
knot

P2# · · ·#Pn = Q1# . . .#Qj−1#Qj+1# . . .#Qm

Repeatedly, one will eventually obtain the desired result.

4.3.6 Crossing and unknotting numbers

Definition 4.3.24. The crossing number of a knot K is the minimum number of
crossings among all knot diagrams that represent K. We denote it by c(K)

Given a crossing in a knot diagram, we can perform surgery and change the
crossing, that is, switch an overcrossing to an undercrossing and vise-versa.

Definition 4.3.25. The unknotting number of a knot K is the minimum number of
surgeries at crossings that one must perform on a knot diagram to change the knot
into the unknot. We denote it by u(K).

Proposition 4.3.26. Given a knot K, u(K) ≤ c(K)
2 .

Before we prove the proposition, we need the following lemma.

Lemma 4.3.27. Let K be a knot and let p be a point on K. If K has a knot
diagram such that transversing the knot starting at p, one meets every crossing first
as an undercrossing (respectively overcrossing), then K is the unknot.
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Proof. The proof for the undercrossing case is essentially the same as the proof for
the overcrossing case. In light of this, we just give the proof for undercrossings case.

(1) Consider our knot diagram as a map γ : I → R2 that traces out the diagram,
passing through itself at crossings, starting with γ(0) = p.

(2) We may lift our knot into R3, be defining γ̃(t) = (γ(t), t).

(3) The net effect of this is that as one traces out the knot one moves upwards in
3-space. For example, if we have move 1/2 of the way around the knot, then
we should be floating 1/2 about the xy-plane. After running along the knot,
we need to adjoin the starting end with the ending end. So we simply drop
the knot down in a straight line to tie off the knot.

(4) By our transversing assumptions, this procedure is well defined since we only
go ”over” previous paths, that is, we only have to deal with over-crossings
and so we can have the knot continualy move upwards and not have to worry
about it having to move back downwards to perform an under-crossing.

(5) Now one could either explicitly write down an isotopy from our lifted up knot
(which is equivalent to our original knot!) to the unknot or one can simply
observe that this is the unknot.

We now prove proposition 4.3.26.

Proof. Pick a knot diagram for K that realizes c(K), that is, it has c(K) crossings.

Fix a point p on K. Via transversing K starting at p, enumerate the crossings of
K and note whether they are encountered first as undercrossings or as over crossings.
Let u denote the number which are first encountered as undercrossings and let o
denote the number which are first encountered as overcrossings. We have that

c(K) = u+ o

Consequently, one of the following must be true.

u ≤ c(K)

2
or o ≤ c(K)

2

In the former case, we only need to change less than c(K)
2 undercrossings to over-

crossings to produce a knot of the form in lemma 4.3.27, producing the unknot.
Similarly, in the latter case, we only need to change less than c(K)

2 overcrossings to
undercrossings, etc.. This concludes the proof.
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4.3.7 The Jones Polynomial

In this section, we work with links instead of just knots. We remark that just as with
knot we have knot diagrams with links we have link diagrams. They are produced
in the same manner, namely, lie the link down onto the plane. We remark that the
analogue of Remark 4.3.7 holds for links, that is, we have the following theorem.

Theorem 4.3.28. Any two link diagrams represent the same link if and only if one
diagram can be transformed to the other via a sequence of Reidemeister moves.

Definition 4.3.29. The Kauffman bracket is the function

〈·〉 : {Link Diagrams} → Laurant polynomials

3 determined by the relations in figure 4.9.

Figure 4.9: The determining relations for the Kauffman bracket.

Remark 4.3.30. Let us break down definition 4.3.29. To spell the determining rela-
tions in words:

(1) If U is the unknot, then

〈U〉 = 1

(2) If D is a link diagrams and D t U is the link diagram for the link obtained
from considering D with a disjoint unknot, then

〈D t U〉 = (−T−2 − T 2)〈D〉

(3) If D is a link diagram and c is a crossing in D, then we can resolve the crossing
in two manners. The Kauffman bracket thus relates the Kauffman bracket of
a diagram with the Kauffman brackets of the possible resolutions.

3Polynomials with possibily negative powers. E.g. t−2 + 33t−33 + t6.
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The Kauffman bracket determines a function from link diagrams to Laurant polyno-
mials since we can consistently apply the third relation to produce a disjoint union
of unknots and then apply the first and second relation to inductively/repeated
compute the Kauffman bracket of the original link.

Example 4.3.31. We can illustrate the definition of the Kauffman bracket via a
computation on a simple link. See figure 4.10.

Figure 4.10: The Kauffman bracket of a link.

Notice that the Kauffman bracket is not a link invariant, that is, the Kauffman
bracket depends on the link diagram. In other words, the Kauffman bracket is
not invariant under Reidemeister moves. The main issue is with kinks, that is,
Reidemeister moves of the first type.

Proposition 4.3.32. The relations displayed in figure 4.11 hold

Figure 4.11: Relations Kauffman brackets and Reidemeister moves.

Definition 4.3.33. Let L be an oriented link, that is, every circle in L has a
direction. A crossing in the link diagram is labeled positive/negative according to
figure 4.12.
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Figure 4.12: Positive and negative crossings.

Definition 4.3.34. The writhe of a link diagram is the sum of the signs of its
crossings, where a positive crossing is assigned the sign +1 and a negative crossing
is assigned a sign −1. Denote the writhe of a link diagram D by w(D).

Remark 4.3.35. The Writhe of a link diagram is invariant under Reidemeister moves
of the second and third type. One shows this by hand.

Proposition 4.3.36. Let D be a link diagram for a link L. The Laurant polynomial

(−T )−3w(D)〈D〉

is an invariant of the link L, that is, given two link diagrams D and D′ for the link
L, we have an equality

(−T )−3w(D)〈D〉 = (−T )−3w(D
′)〈D′〉

Proof. To prove ??, we simply need to check that it is invariant under Reidemeister
moves. By remark 4.3.35 and proposition 4.3.32, we have that it is invariant under
Reidemeister moves of the second and third type. Invariance for Reidemeister moves
of the first type is left as an exercise for the reader.

Definition 4.3.37. The Kauffman polynomial of an oriented link L is the Laurant
polynomial

K(L)(−T )−3w(D)〈D〉

where D is a link diagram for L.

Remark 4.3.38. Substituting t1/2 for T−2 yields the Jones polynomial.
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Figure 4.13: Example of Kauffman polynomials.

Figure 4.14: Example of Kauffman polynomials.

Corollary 4.3.39. We have the following equality

K(K#K ′) = K(K) ·K(K ′)

Proof. Exercise!

The Jones polynomial is a very rich invariant. It tells us a lot about the topology
of knots and should be further explored in these notes. However, as time is short,
we do not dive into such topics here.
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Figure 4.15: Example of Kauffman polynomials.

Figure 4.16: Example of Kauffman polynomials.
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Figure 4.17: Example of Kauffman polynomials.
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Chapter 5

Polygonal Homology and
Persistence

5.1 Algebraic Preliminaries

5.1.1 Some group theory

Definition 5.1.1. A commutative group is a set G along with a map ? : G×G→ G,
denoted as the pair (G, ?), satisfying:

(1) (unital) There exists an element e in G such that ?(e, g) = g = ?(g, e) for all
g in G. We call e the unit or identity in G.

(2) (inverses) For each a in G, there exists an a−1 in G such that ?(a, a−1) = e =
?(a−1, a). We call a−1 the inverse of a.

(3) (associativity) For all a, b, c in G, we have that

?(a, ?(b, c)) = ?(?(a, b), c)

(4) (commutativity) For all a, b in G, we have that

?(a, b) = ?(b, a)

Typically we just write ?(a, b) as a ? b or a · b or a+ b or ab, etc. Depending on
if we want to think of ? as an addition or a multiplication.

Definition 5.1.2. Let (G, ?) and (H, •) denote two groups. A map φ : G → H is
a homomorphism if for all a, b in G, we have that φ(a ? b) = φ(a) ? φ(b).

Definition 5.1.3. Let φ : G → H be a group homomorphism. The kernel of φ is
the set

ker(φ) = {g ∈ G | φ(g) = eH}

119
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Remark 5.1.4. Intuitively, the kernel of a group homomorphism is the set of elements
that are sent to zero by φ, that is, the set of elements that are killed by φ.

Lemma 5.1.5. If φ : G→ H be a group homomorphism, then ker(φ) is a group.

Proof. Since ker(φ) is a subset of G, we can add two elements in ker(φ) by adding
them in G, we simply need to make sure that when we add two elements in ker(φ)
that we again obtain an element in ker(φ), that is, we need to show that this addition
is well-defined. Explicitly, we need to show that if

φ(g1) = eH = φ(g2)

then
φ(g1 + g2) = eH

since the latter expression says that the addition of two elements in the kernel is again
in the kernel. But this follows easily from the definition of a group homomorphism:

φ(g1 + g2) = φ(g1) + φ(g2) = eH + eH = eH

as desired.

5.1.2 Mod 2 commutative word groups

Definition 5.1.6. A word group1 consists of the following:

(1) An alphabet, that is, a list of symbols a1, . . . , a`.

(2) A list of generators w1, . . . , wm, where each wi is a word spelled with the aj ’s.

(3) A list of relations r1, . . . , rn, where each ri is a word spelled with the aj ’s.

This gives rise to a group denoted 〈w1, . . . , wm | r1, . . . , rn〉 as follows:

• The elements are given by equivalence classes of words obtained from catenat-
ing together copies of the words w1, . . . , wm, where two concatenated words
are equivalent if

– we can rearrange the letters of one word to obtain another

– a word with two ai is equivalent to the word with the two ai’s removed.

– a word with a subword ri is equivalent to the word with ri removed.

• We add two elements by concatenating the associated words.

Proposition 5.1.7. Let 〈w1, . . . , wm | r1, . . . , rn〉 be a word group. It is, in fact, a
commutative group.

1Perhaps we should call this a mod 2 commutative word group
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Proof. We verify the axioms of a commutative group.

(1) (unital) The empty word, that is, the word with no letters, is the unit. Since
concatenating any word with the empty word reproduces the word, it is the
unit.

(2) (inverses) Given a word wi1 · · ·wik , we have that wi1 · · ·wik is the inverse of
wi1 · · ·wik . Indeed, concatenating gives the word wi1 · · ·wikwi1 · · ·wik , but
such a word always has an even number of each letter. So applying the
above equivalence, that is, successively canceling pairs of ai’s, we have that
wi1 · · ·wikwi1 · · ·wik is equivalent to the empty word, that is, the unit.

(3) (associativity) Concatenating words is clearly associative.

(4) (commutativity) Since we can freely rearrange the letters of any word to obtain
an equivalent word, we can rearrange the letters of a concatenated word to
produce the reverse concatenation, that is, concatenation is associative.

Example 5.1.8. (1) 〈a, b, c〉

(2) 〈ab, a〉 ∼= 〈a, b〉

(3) 〈abc, ab | bc〉 ∼= 〈a, b | bc〉 = 〈a, b〉

(4) 〈abcd, ab, cd | ac, db, ad〉 ∼= 〈0〉

(5) 〈ab, bc, ca | c〉 ∼= 〈a, b〉
As the above examples illustrate, different presentations of a word group, that

is, one’s choice of generators and relations, can give rise to the same/isomorphic
word groups. We produce these isomorphisms by noting that we get the same
”vocabulary” of words after playing with generators and relations.

Remark 5.1.9. A group homomorphism of word groups

φ : 〈w1, . . . , wm | r1, . . . , rn〉 → 〈v1, . . . , v` | s1, . . . , sk〉

is an assignment of each generator wi to a word obtained from concatenating copies
of vj ’s. Using φ, we can form two new word groups.

ker(φ) = 〈x1, . . . , xp | r1, . . . , rn〉

where xi are the words such that φ(xi) is the empty word.

〈v1, . . . , v` | s1, . . . , sk〉/ Im(φ) = 〈v1, . . . , v` | s1, . . . , sk, φ(w1), . . . , φ(w`)〉
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5.1.3 Chain complexes

Definition 5.1.10. A chain complex consists of:

(1) Three word groups
C0 = 〈v1, . . . , v`〉

C1 = 〈e1, . . . , em〉

C2 = 〈f1, . . . , fn〉

(2) Two group homomorphisms

∂2 : C2 → C1

∂1 : C1 → C0

such that ∂1 ◦ ∂2(x) = 0 for all words x in C2.

We denote such information by the pair (C•, ∂•).

Lemma 5.1.11. If (C•, ∂•) is a chain complex, then Im ∂2 ⊂ ker ∂1

Proof. Suppose that y is in Im ∂2. Then there exists z ∈ C2 such that ∂2(z) = y.
Consequently,

∂1(y) = ∂1(∂2(z)) = 0

by definition. By definition, y is in ker ∂1, as desired.

Definition 5.1.12. Let (C•, ∂•) be a chain complex. The homology of (C•, ∂•) are
the groups H0(C), H1(C), and H2(C) given by

H0(C) = C0/ Im ∂1

H1(C) = ker ∂1/ Im ∂2

H2(C) = ker ∂2

Notice that by lemma 5.1.11, we have that H1(C) actually makes sense!

5.2 Polygonal Homology

Let X be a polygonal complex, that is, X is a gluing of vertices, edges, and
faces/polygons. Let X0, X1, and X2 denote the sets of vertices, edges, and faces of
X respectively. We define a chain complex associated to X as follows:

C0(X) = 〈v1, . . . , v`〉

C1(X) = 〈e1, . . . , em〉
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C2(X) = 〈f1, . . . , fn〉

where vi ∈ X0, ei ∈ X1, and fi ∈ X2. We call C•(X) the polygonal •-chains of X.
If ei has vertices vj and vk (possibly non-distinct), then

∂1(ei) = vjvk

If fi has edges ej1 , . . . , ejk (possibly non-distinct), then ∂2(fi) = ej1 · · · ejk . The
maps ∂1 and ∂2 are called the boundary operators.

Claim 5.2.1.

∂1 ◦ ∂2 = 0

Proof. The proof is by observation. The proof for a face that is a triangle is given
in figure 5.1. The proof for faces that are more general polygons is analogous.

Figure 5.1: The composition of boundary operators applied to a triangular face.

Definition 5.2.2. The polygonal homology of X is the homology of the chain com-
plex (C•(X), ∂•).

Example 5.2.3. For the following examples, we omit the work and simply give the
answers. We encourage the reader to work out the details as we did in class. As we
saw in example 5.1.8, a word group can have multiple presentations. So the answers
that we give are for a particular presentation. Below we will give a heuristic way of
computing these groups.
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Figure 5.2: Polygonal complex for a triangular graph.

(1)

H•(X) =


〈x〉 • = 0

〈abc〉 • = 1

〈0〉 • = 2

Figure 5.3: Polygonal complex for a triangle.
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(2)

H•(X) =


〈x〉 • = 0

〈0〉 • = 1

〈0〉 • = 2

Figure 5.4: Polygonal complex.

(3)

H•(X) =


〈v1〉 • = 0

〈e1e6e7e4, e2e3e7〉〉 • = 1

〈0〉 • = 2
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Figure 5.5: Polygonal complex for a torus .

(4)

H•(X) =


〈v〉 • = 0

〈a, b〉 • = 1

〈A〉 • = 2

Figure 5.6: Polygonal complex for a sphere.



5.2. POLYGONAL HOMOLOGY 127

(5)

H•(X) =


〈x〉 • = 0

〈0〉 • = 1

〈A〉 • = 2

Figure 5.7: Polygonal complex for a tree.

(6)

H•(X) =


〈v1〉 • = 0

〈0〉 • = 1

〈0〉 • = 2
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Figure 5.8: Polygonal complex for a graph.

(7)

H•(X) =


〈v1〉 • = 0

〈e1e3e4, e5e6e7, e7e8e9e10e11〉 • = 1

〈0〉 • = 2

Figure 5.9: The .
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(8)

H•(X) =


〈v〉 • = 0

〈a, b, c, d〉 • = 1

〈A〉 • = 2

Remark 5.2.4. Arguing as we did in proposition 2.3.5 with some additional care,
one can show that H•(X) is independent of the polygonal structure. That is, if X
and Y are homeomorphic polygonal complexes (that is, homeomorphic spaces that
possibly have differnet polygonal structures), then H•(X) = H•(Y ).

Remark 5.2.5. H0(X) is isomorphic to the word group 〈a1, . . . , ak〉 where ai corre-
sponds to a connected component of X. Indeed,

H0(X) = 〈v1, . . . , v` | ∂1(e1), . . . , ∂1(em)〉

So vivj = 0 if an edge connects vi to vj . So we get an equivalent word group by
removing the relation vivj and the letter vj . Now if two vertices are in the same
conneceted component of X, then they are joined via a sequence of edges. Using
the above procedure, the two said vertices will give equivalent words. So we obtain
a word group with no relations and a vertex for each connected component of X.

Remark 5.2.6. H1(X) is given by words whose letters/edges glue together to form
closed chains, that is, loops. Two loops are equivalent, if we may push one loop
across triangles to obtain another loop. To see this, notice that elements in ker(∂1)
are sequences of edges that have vertices that pair up, that is, sequences of edges
that glue together to form loops. The relations from Im(∂2) say that we can obtain
equivalent words/loops by pushing across triangles.
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