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Workflow

Brain Artery Trees
(Topological

Data Analysis)

Persistence Diagrams
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Workflow

Persistence Diagrams (Feature
Extraction and

Statistical
Analysis)

Statistical Summaries
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Kendall Correlation = 0.42593,    p−val = 8.9307e−10
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Goals

Use Topological Data Analysis (TDA) to analyze the
multi-scale geometry and topology of branching and
looping structures in brain artery trees

Statistically analyze the 3D motifs that are identified by
TDA in relation to covariates (age, sex, etc.)
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Results

Correlate quantified topological motifs with age. Pearson
Correlation: 0.58
p-value: 3.2043× 10−10
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Data Set

Magnetic Resonance
Angiography (MRA)

Provided by Dr. Elizabeth Bullitt,
Department of Neurosurgery at
UNC- Chapel Hill

Composed of 98 healthy subjects

Roughly even mix of males and
females

Wide range of ages (18-77)
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Magnetic Resonance Angiography

(Advanced Imaging of Port Charlotte) (Imaging Group of Delaware)
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Tube Tracking

(Bullitt-Aylward, 2002)
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Tube Tracking: Image to Data Structure
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Previous Analyses and Results

Simple Summaries (Bullitt, et al. 2005)
Branching frequency, total vessel length
Did not utilize most of the information that is available

Pearson Correlations ∼ .6

Discrete Methods (Aydin, et al. 2009)
Disregarded metrics and 3D embedding
Combinatorially looked at the branching structure

Found statistically significant age effect but no correlations detected

Dyck Paths (Shen, et al. 2013)
Took 3D brain tree and embedded it in 2D
Represent tree structured random object as function
Applied standard asymptotic methods

Pearson Correlation ∼ .25 and indication of significant sex effect

Phylogenetic Trees (Skwerer, et al. 2013)
Connect cortical surface landmarks to nearest leaves
Apply averaging algorithm in tree space

Found significant age and gender effects (some where stronger than previous
analyses)
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Moral of the story from previous analyses

Combinatorics of branching patterns and branching length
is not enough

Need to analyze geometry of brain artery trees in 3D
embedding

Tortuosity!
How do the arteries wrap in on themselves?
Bending structure is important
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Our Analysis

Use Topological Data Analysis (TDA) to quantify branching
and looping structure of brain artery trees

Big ideas:
"Filter" brain artery trees to find bends and measure their
sizes
"Thicken" up the branches and look for "loops"
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Illustrations

Play filtering brain video
Play thicking brain video
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Persistence Diagrams

For each bend we ask two questions:
When did we filter (ie, add in edges) enough to see a bend
form? (birth time)
When did we filter enough to see the complete bend?
(death time)

Each bend is assigned a birth/death pair
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Persistent Homology

Dim(H0(X)) = 0
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Persistent Homology

Dim(H0(X)) = 1
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Persistent Homology

Dim(H0(X)) = 3
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Persistent Homology

Dim(H0(X)) = 1
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Persistence Diagrams
For each bend we ask two questions:

When did we filter (ie, add in edges) enough to see a bend
form? (birth time)
When did we filter enough to see the complete bend?
(death time)

Each bend is assigned a birth/death pair

Alex Pieloch Duke University (at time of research)
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Persistence Diagrams
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Persistence Diagrams
For each bend we ask two questions:

When did we filter (ie, add in edges) enough to see a bend
form? (birth time)
When did we filter enough to see the complete bend?
(death time)

Each bend is assigned a birth/death pair
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Stability of Persistent Homology

To what extent are persistence diagrams stable under addition
of noise?
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Stability of Persistent Homology

Robust to changes in the initial topological space
If we “wiggle” original space by some ε, then persistence
diagrams will only change by an ε
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Stability of Persistent Homology

Robust to changes in the initial topological space
If we “wiggle” original space by some ε, then persistence
diagrams will only change by an ε
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Persistence Diagrams

For each “loop” we ask two questions:
When did we “thicken” the tree enough for loop to form?
(birth time)
When did we “thicken” the tree enough for loop to fill in?
(death time)

Each loop is assigned a birth/death pair

Alex Pieloch Duke University (at time of research)
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Persistence Diagrams

For each “loop” we ask two questions:
When did we “thicken” the tree enough for loop to form?
(birth time)
When did we “thicken” the tree enough for loop to fill in?
(death time)

Each loop is assigned a birth/death pair
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Persistent Homology

Dim(H0(X)) = 50 Dim(H1(X)) = 0
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Persistent Homology

Dim(H0(X)) = 49 Dim(H1(X)) = 0
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Persistent Homology

Dim(H0(X)) = 43 Dim(H1(X)) = 1
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Persistent Homology

Dim(H0(X)) = 36 Dim(H1(X)) = 0
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Persistent Homology

Dim(H0(X)) = 31 Dim(H1(X)) = 1
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Persistent Homology

Dim(H0(X)) = 21 Dim(H1(X)) = 0
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Persistent Homology

Dim(H0(X)) = 12 Dim(H1(X)) = 0
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Persistent Homology

Dim(H0(X)) = 7 Dim(H1(X)) = 0
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Persistent Homology

Dim(H0(X)) = 1 Dim(H1(X)) = 1
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Persistent Homology

Dim(H0(X)) = 1 Dim(H1(X)) = 2
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Persistent Homology

Dim(H0(X)) = 1 Dim(H1(X)) = 4
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Persistent Homology

Dim(H0(X)) = 1 Dim(H1(X)) = 5
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Persistent Homology

Dim(H0(X)) = 1 Dim(H1(X)) = 7
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Persistent Homology

Dim(H0(X)) = 1 Dim(H1(X)) = 9
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Persistent Homology

Dim(H0(X)) = 1 Dim(H1(X)) = 3

Alex Pieloch Duke University (at time of research)

Multi-scale Looping and Branching Analysis of Brain Artery Trees



Brain Artery Trees Previous Analyses Persistent Homology Statistical Analysis Reflection

Persistent Homology

Dim(H0(X)) = 1 Dim(H1(X)) = 5
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Persistent Homology

Dim(H0(X)) = 1 Dim(H1(X)) = 0
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Persistence Diagrams
For each “loop” we ask two questions:

When did we “thicken” the tree enough for loop to form?
(birth time)
When did we “thicken” the tree enough for loop to fill in?
(death time)

Each loop is assigned a birth/death pair
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Persistence Diagrams
For each “loop” we ask two questions:

When did we “thicken” the tree enough for loop to form?
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Each loop is assigned a birth/death pair
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Persistence Diagrams
For each “loop” we ask two questions:

When did we “thicken” the tree enough for loop to form?
(birth time)
When did we “thicken” the tree enough for loop to fill in?
(death time)

Each loop is assigned a birth/death pair
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Goals

Use Topological Data Analysis (TDA) and Persistent
Homology to analyze the multi-scale geometry and
topology of branching and looping structures in brain artery
trees

Statistically analyze the 3D motifs that are identified by
TDA in relation to covariates (age, sex, etc.)

Alex Pieloch Duke University (at time of research)
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Goals

Use Topological Data Analysis (TDA) and Persistent
Homology to analyze the multi-scale geometry and
topology of branching and looping structures in brain artery
trees

Statistically analyze the 3D motifs that are identified by
TDA in relation to covariates (age, sex, etc.)
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Our Analysis and Results

3D Brain Tree→ Persistence Diagrams→ Feature Vectors

Assign each point in the persistence diagram a persistence
time (persistence time = death time − birth time)
Look particularly at top 100 persistence times or top 100
persistence times points with their birth times
Defines a feature vector for each brain artery tree

Alex Pieloch Duke University (at time of research)
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Our Analysis and Results

3D Brain Tree→ Persistence Diagrams→ Feature Vectors
Assign each point in the persistence diagram a persistence
time (persistence time = death time − birth time)

Look particularly at top 100 persistence times or top 100
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Defines a feature vector for each brain artery tree
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Our Analysis and Results

3D Brain Tree→ Persistence Diagrams→ Feature Vectors
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Our Analysis and Results

3D Brain Tree→ Persistence Diagrams→ Feature Vectors
Assign each point in the persistence diagram a persistence
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Our Analysis and Results

3D Brain Tree→ Persistence Diagrams→ Feature Vectors

Dimensionality Reduction

Run principle component analysis on feature vectors
Find first principle component vector (PC1)
Find each feature vector’s length along PC1

Analyses

Age: Correlate the log of the PC1 lengths with respective
ages
Sex: Run a permutation test on the feature vectors of
different sexes

Alex Pieloch Duke University (at time of research)
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Our Analysis and Results
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Our Analysis and Results

3D Brain Tree→ Persistence Diagrams→ Feature Vectors

Dimensionality Reduction
Run principle component analysis on feature vectors
Find first principle component vector (PC1)
Find each feature vector’s length along PC1

Analyses

Age: Correlate the log of the PC1 lengths with respective
ages
Sex: Run a permutation test on the feature vectors of
different sexes
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Our Analysis and Results

3D Brain Tree→ Persistence Diagrams→ Feature Vectors

Dimensionality Reduction
Run principle component analysis on feature vectors
Find first principle component vector (PC1)
Find each feature vector’s length along PC1

Analyses
Age: Correlate the log of the PC1 lengths with respective
ages

Sex: Run a permutation test on the feature vectors of
different sexes
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Our Analysis and Results

3D Brain Tree→ Persistence Diagrams→ Feature Vectors

Dimensionality Reduction
Run principle component analysis on feature vectors
Find first principle component vector (PC1)
Find each feature vector’s length along PC1

Analyses
Age: Correlate the log of the PC1 lengths with respective
ages
Sex: Run a permutation test on the feature vectors of
different sexes
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Age vs Total Vessel Length

Pearson Correlation = 0.6243
p-value = 6.46× 10−12

Reproduced result from (Bullitt-Aylward, 2002)

Alex Pieloch Duke University (at time of research)
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Scaling Feature Vectors

Want to remove other confounding variables
Scale our feature vectors to remove possible confounding
variables

Feature Vector
q

Total Vessel Length

Alex Pieloch Duke University (at time of research)
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Analysis of Age: 0-Dimensional

Pearson Correlation: 0.57
p-value: 1.07× 10−9
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Analysis of Age: 0-Dimensional
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Analysis of Different Sexes: 0-Dimensional

Sex Difference p-value: 4.1%
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Analysis of Different Sexes: 0-Dimensional

Sex Difference Mean p-value: 0.0485
Sex Difference Std of p-value: 0.044
Sex Difference Median p-value: 0.038
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Analysis of Age: 1-Dimensional

Pearson Correlation: 0.5409
p-value: 9.43× 10−9
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Analysis of Age: 1-Dimensional
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Analysis of Different Sexes: 1-Dimensional

Sex Difference p-value: 2.8%
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Analysis of Different Sexes: 1-Dimensional

Sex Difference Mean p-value: 0.0414
Sex Difference Std of p-value: 0.0719
Sex Difference Median p-value: 0.028
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Moral of the Story

High-persistence points correspond to big geometric
features

Small-persistence points correspond to small geometric
features, but might be noise

BUT, large persistence does not imply significant

TDA and persistent homology can quantify and distinguish
between geometric motifs in cerebrovascular system

Alex Pieloch Duke University (at time of research)
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Moral of the Story

High-persistence points correspond to big geometric
features

Small-persistence points correspond to small geometric
features, but might be noise

BUT, large persistence does not imply significant

TDA and persistent homology can quantify and distinguish
between geometric motifs in cerebrovascular system

Alex Pieloch Duke University (at time of research)

Multi-scale Looping and Branching Analysis of Brain Artery Trees



Brain Artery Trees Previous Analyses Persistent Homology Statistical Analysis Reflection

Moral of the Story

High-persistence points correspond to big geometric
features

Small-persistence points correspond to small geometric
features, but might be noise

BUT, large persistence does not imply significant

TDA and persistent homology can quantify and distinguish
between geometric motifs in cerebrovascular system
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Moral of the Story

High-persistence points correspond to big geometric
features

Small-persistence points correspond to small geometric
features, but might be noise

BUT, large persistence does not imply significant

TDA and persistent homology can quantify and distinguish
between geometric motifs in cerebrovascular system
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Moral of the Story

High-persistence points correspond to big geometric
features

Small-persistence points correspond to small geometric
features, but might be noise

BUT, large persistence does not imply significant

TDA and persistent homology can quantify and distinguish
between geometric motifs in cerebrovascular system

Alex Pieloch Duke University (at time of research)

Multi-scale Looping and Branching Analysis of Brain Artery Trees



Brain Artery Trees Previous Analyses Persistent Homology Statistical Analysis Reflection

Questions???
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