Lecture \#9

Warm-up: 1) Sketch the graph of
a) $2 f(x+1)-1$
b) $f\left(\frac{1}{2} x\right)+1$

2) Complete the graph of f below by assuming
a) f is wen
b) f is odd

3) What is the domain of f / g where the graphs of f and g are given below

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
& g(x)=\sqrt{x-1} \\
& f / g=\frac{\sqrt{x}}{\sqrt{x-1}} \\
& \quad \operatorname{domain}(f / g)=\{x \mid g(x) \neq 0\} \cap \operatorname{domain}(f) \cap \operatorname{domain}(g) \\
& \quad \text { domain }(f)=[-5,0) \cup(0,3) \cup(3,6]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{domain}(g)=[-5,6) \\
& \{x \mid g(x) \neq 0\}=[-5,4) \cup(-4,2) \cup(2,5) \cup(5,6)
\end{aligned}
$$

Defn: $f, g=$ fous, the compositia of g w/ f is the fon $f \circ g(x)=f(g(x))$

Ex: $\quad \leftrightarrow f(x)=\sqrt{x}, g(x)=x-3$, then

$$
\begin{aligned}
f_{\circ}(x) & =\sqrt{x-3} \\
f(g(x)) & =f(x-3)=\sqrt{x-3}
\end{aligned}
$$

$4 f(x)=x^{2}, g(x)=x^{5}$

$$
f_{0}(x)=f(g(x))=f\left(x^{5}\right)=\left(x^{5}\right)^{2}=x^{10}
$$

$\Leftrightarrow \quad f(x)=\sqrt{x}, \frac{g(x)=x^{2}-1}{x^{2}-1}$

$$
f \circ g_{1}(x)=\sqrt{x^{2}-1}
$$

$$
f(g(x))=f\left(x^{2}-1\right)=\sqrt{x^{2}-1}
$$

Rmk: $\operatorname{domain}(f \circ g)=\operatorname{domain}(g) \cap\{x \mid g(x)$ in domain $(f)\}$ c) $f(g(x))$
$\Leftrightarrow f(x)=x^{2}$

$$
\begin{aligned}
& g(x)=\frac{1}{x} \int x^{2} \\
& f\left(\frac{1}{x}\right) \\
& \left.\Leftrightarrow f(x)=\sqrt{x} \quad \begin{array}{l}
g(x)=x-3
\end{array}\right\} \begin{array}{l}
\operatorname{dom}(g)=\mathbb{R} \\
\{x \mid g(x)
\end{array} \\
& g(x)=x-3 \quad\{x \mid g(x) \text { in } \operatorname{dom}(f)\} \\
& \left\{x \mid g_{11}(x) \geqslant 0\right\} \\
& \{x \mid x-3 \geq 0\} \\
& \{x \mid x \geqslant 3\} \\
& \operatorname{domain}(f \circ g)=\{x \mid x \geqslant 3\} \\
& \operatorname{domain}(\sqrt{x-3})=\{x(x \geqslant 3\} .
\end{aligned}
$$

Rumk: Decompose fons as comp. of fons

$$
\begin{array}{ll}
\leftrightarrow & F(x)=\sqrt{x-3} \\
& f(x)=\sqrt{x}, g(x)=x-3 \\
\Rightarrow & F(x)=f \circ g(x) . \\
\Leftrightarrow & F(x)=(x+\pi)^{777} \\
& f(x)=x^{777}, g(x)=x+\pi \\
f \circ g(x)=f(g(x))=f(x+\pi)=(x+\pi)^{777} \\
\rightarrow & F(x)=\frac{1}{\sqrt{x-7}}=f \cdot g \cdot k(x)=f(g(h(x))) . \\
& h(x)=x-7, g(x)=\sqrt{x}, f(x)=\frac{1}{x}
\end{array}
$$

Section 2.8: 1-to-1 fans and their inverses.

Defn: A fan f is one-to-one if

$$
\omega f\left(x_{1}\right)=f\left(x_{2}\right) \text {, then } x_{1}=x_{2}
$$

f maps each value x to its own unique value $f(x)$ that is different from $f\left(x_{0}\right)$ fo $x_{0} \neq x$.

Rink: Horizontal Line Test: A fan f is $1-t-1$ if every hor. line meets the graph of f at most 1 point.

but $-3.5 \neq 1 / 3$, so f is not $1-t_{0}-1$.

Ex: $\quad f(x)=x^{3}, \quad g(x)=x^{2}$.
a) Is f one-to-one?
b) Is g
$\Leftrightarrow f\left(x_{0}\right)=f\left(x_{1}\right)$, then $x_{0}=x_{1}$

$$
\left(x_{0}\right)^{3} \quad\left(x_{1}\right)^{3}
$$

s $\sqrt[3]{ }$ of bothsides, $\sqrt[3]{\left(x_{0}\right)^{3}}=\sqrt[3]{\left(x_{1}\right)^{3}}$

$$
x_{0}
$$

x_{1}

$$
\begin{aligned}
& \Rightarrow x_{0}=x_{1} \\
& \Rightarrow f \text { is } 1-t_{0}-1
\end{aligned}
$$

\leftrightarrow

Spae

$$
\begin{aligned}
& \quad\left(x_{0}\right)^{2}=g\left(x_{0}\right)=g\left(x_{1}\right)=\left(x_{1}\right)^{2} \\
& \sqrt{\cdot} \Rightarrow x_{0}= \pm x_{1}
\end{aligned}
$$

\Rightarrow not nee. equal.

Ex: $\quad f(x)=3 x+2$, is it one-to-one?
Alg, we assume $f\left(x_{0}\right)=f\left(x_{1}\right)$ and need to show $x_{0}=x_{1}$

$$
\begin{aligned}
& 3 x_{0}+2=f\left(x_{0}\right)=f\left(x_{1}\right)=3 x_{1}+2 \\
\Rightarrow & 3 x_{0}=3 x_{1} \\
\Rightarrow & x_{0}=x_{1} \\
\Rightarrow & f \text { is one-to-one }
\end{aligned}
$$

Ex: $\quad f(x)=x^{4}-5$
Spse $f\left(x_{0}\right)=f\left(x_{1}\right)$
if $x_{0}=x_{1}$, then f is $1-t_{0}-1$
" not , then \cdot - not ..

$$
\left.\begin{array}{rl}
& \left(x_{0}\right)^{4}-5=f\left(x_{0}\right)=f\left(x_{1}\right)=\left(x_{1}\right)^{4}-5 \\
\Rightarrow & x_{0}^{4}=x_{1}^{4} \\
\Rightarrow & \sqrt[4]{0} \rightarrow x_{0}= \pm x_{1} \\
& x_{0}=2 \\
& x_{1}=-2
\end{array}\right\} \Rightarrow \begin{aligned}
& 2^{4}=(-2)^{4} \\
& \text { i" }(-1)^{4} 16=16 .
\end{aligned}
$$

$\Rightarrow f$ is not $1-t-1$

Ex: $f(x)=x^{2}-2 x+3$, is 1 -t ot on not?

$$
\begin{aligned}
& f\left(x_{0}\right)=f\left(x_{1}\right) \\
& x_{0}^{2}-2 x_{0}+3=x_{1}^{2}-2 x_{1}+3 \\
\Rightarrow & x_{0}^{2}-2 x_{0}=x_{1}^{2}-2 x_{1} \\
\Rightarrow & 1 x_{0}^{2}-2 x_{0}+\left(2 x_{1}-x_{1}^{2}\right)=0
\end{aligned}
$$

$$
\underline{a} x_{0}^{2}+\underline{b} x_{0}+\underline{c}=0
$$

Quad form

$$
\Rightarrow x_{0}=\frac{+2 \pm \sqrt{4-4\left(2 x_{1}-x_{1}^{2}\right)}}{2}
$$

$\Rightarrow x_{0}$ can be malt things and have exp hold.

Ex: $\quad f(x)=x^{2}-1$, is $\quad 1-t_{0}-1$?
is Find counter exp $\left(x_{0}, x_{1}\right.$ w/ $\left.f\left(x_{0}\right)=f\left(x_{1}\right) x_{0} \neq x_{1}\right)$.
\rightarrow zeros of f

$$
\begin{aligned}
& f(1)=0 \\
& f(-1)=0
\end{aligned}
$$

