

1)
$$f(x) = \sqrt{x^{*} - 1}$$
, $f(-x) = \sqrt{(-x)^{*} - 1}$
4 is even. $= \sqrt{x^{*} - 1}$
5 extrime 2.72 Combining Ferm
RmK² Let f, g be two fores.
 $\therefore (f + g)(x) = f(x) + g(x)$.
 $\therefore f(x) = x^{2}, g(x) = x^{3} = x(f + g)(x) = x^{2} + x^{3}$.
 $(f - g)(x) = f(x) - g(x)$
 $\therefore (f - g)(x) = f(x) - g(x)$
 $\therefore (f - g)(x) = f(x) - g(x)$
 $\therefore f(x) = x^{2}, g(x) + x^{3} = x(f - g)(x) = x^{3} + x^{3}$.
 $(f + g)(x) = f(x) - g(x)$
 $\therefore f(x) = x^{2}, g(x) + x^{3} = x(f - g)(x) = x^{3} + x^{3}$.
 $(f + g)(x) = f(x) - g(x)$
 $\therefore f(x) = x^{2}, g(x) + x^{3} = x(f - g)(x) = x^{3} + x^{3} + x^{3}$.
 $(f + g)(x) = f(x) - g(x)$
 $(f + g)(x) = f(x) - g(x)$
 $(f + g)(x) = x^{2} + x^{3} = \frac{1}{x}$.
RmK² · Domain of $f + g = don(f)$ (1 dom(g)
 $(x + f + g)(x) = \frac{1}{x} + \frac{1}{x-1}$
 $(f + g)(x) = \frac{1}{x$

Exis
$$f(x) = \frac{1}{x-3}$$
, $g(x) = \sqrt{x}$
Question: a) What is the dom. of $f - g$?
 $x = \frac{1}{x-3}$, $g(x) = \sqrt{x}$
 $f(x) = \frac{1}{x-3}$, $g(f) = \frac{1}{x}$
Answer's a) $\{x \mid x \ge 0 \text{ and } x \ne 3\}$, $f(x) = \frac{1}{x}$
b) $\{x \mid x \ge 0 \text{ and } x \ne 3\}$, $f(x) = \frac{1}{x}$
 $f(x) \ge x \ge 0$ and $x \ne 3$ and $x \ne 0$ $\{y = 0\}$ $(y = 1)$
 $f(x) \ge x \ge 0$ and $x \ne 3$ $\{y = 1, 1, 2, 3\}$, $f(x) = \frac{1}{x}$
 $f(x) \ge x$, $f(x) = \frac{1}{x}$, $f(x) = \frac{1}{x}$
 $g(x) = \frac{1}{x}$, $f(x) = \frac{1}{x}$, $f(x)$