Lecture $\# 8$

Warm-up: 1) Draw the graph of the following fans
a) $f(x)=\sqrt{x+2}-1$

b)

c) $f(x)=-|x-2|$

Rok: Think about what happen to $f(x)=x . \quad(3 x+2)$

2) Consider the fan f w/ graph

Draw the graphs of the following fans
a) $g=f(x+4)+2$
b) $h=-f(-x)-1$
c) $k=-f(x-2)+1$

Rok: Vertical stretching
$y=c \cdot f(x) \quad(c>0) \leadsto$ stretch the graph vertically by a factor of c.

$$
\leftrightarrow \quad g(x)=2 \sqrt{x}, \quad f(x)=\sqrt{x}
$$

Rok: Horizontal Stretching
$y=f(c \cdot x),(c>0) \leadsto$ stretch horizontally $(x-d i r)$.
by a factor of of $1 / c$

$$
\leftrightarrow g(x)=(2 x)^{2}, \quad f(x)=x^{2} \leadsto g(x)=f(2 x) \text {. }
$$

$$
\leftrightarrow g(x)=\left|\frac{x}{2}\right| ; f(x|=|x|, g(x)=f(x / 2)
$$

Defn: A ton $f(x)$ is odd if $f(-x)=-f(x)$

$$
\begin{aligned}
& \text { 4 Ex: } \left.\left.\begin{array}{l}
f(x)=\overline{x^{3}} \\
f(-x)=(-x)^{3}=(-1)^{3} \cdot x^{3}=-\left(x^{3}\right)=-f(x) \\
\end{array}\right) . \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

$\rightarrow f$ is odd if and only if its graph is sym wit the origin.

Quest:

is $f(x)$ an odd fan?

$$
\begin{array}{ll}
\Leftrightarrow & f(x)=\left|\frac{2}{3} x\right| \\
& f(-x)=\left|-\frac{2}{3} x\right|=\left|\frac{2}{3} x\right| \neq-f(x) .=-\left|\frac{2}{3} x\right|
\end{array}
$$

Defn: A fan $f(x)$ is even if $f(-x)=f(x)$

$$
\begin{array}{ll}
\Leftrightarrow & f(x)=x^{2} \\
& f(-x)=(-x)^{2}=(-1)^{2} x^{2}-x^{2}=f(x)
\end{array}
$$

$4 f$ is evan when its graph is sym to the y-axis.

Quest:

Even, odd, both, neither?
(1) not even; yes odd.
(2) even
(7) even

Ex: 1) $f(x)=x^{5}-x$
$\therefore \quad \vee \quad f(-x)=-f(x)$ for odd
$f(-x)=f(x)$ for even.

$$
\Leftrightarrow \begin{aligned}
f(-x) & =(-x)^{5}-(-x) \\
& =(-1)^{5} x^{5}+x \\
& =-x^{5}+x \\
& =-\left(x^{5}-x\right) \\
& =-f(x)
\end{aligned}
$$

$\Rightarrow f$ is odd.
To see that it is not even, Suit. to test some value and show above req. fails.

$$
\begin{aligned}
& f(2)=2^{5}-2=32-2=30 \\
& f(-2)=(-2)^{5}-(-2)=-32+2=-30
\end{aligned}
$$

2)

$$
\begin{aligned}
& f(x)=\sqrt{x^{2}-1 ;} ; \begin{aligned}
f(-x) & =\sqrt{(-x)^{2}-1} \\
& =\sqrt{x^{2}-1} \\
& =f(x) .
\end{aligned}
\end{aligned}
$$

Section 2.7: Combining Fcn

Rmk: Let f, g be two fous.

$$
\begin{aligned}
\Leftrightarrow & (f+g)(x)=f(x)<g(x) . \\
& \leftrightarrow f(x)=x^{2}, g(x)=x^{3} \Rightarrow(f+g)(x)=x^{2}+x^{3} . \\
\Leftrightarrow & (f-g)(x)=f(x)-g(x)
\end{aligned}
$$

$$
\rightarrow n \quad n \quad \Rightarrow(f-g)(x)=x^{2}-x^{3} \text {. }
$$

$$
\Leftrightarrow(f \cdot g)(x)=f(x) \cdot g(x)
$$

$$
\Leftrightarrow f(x)=x^{2}, g(x)=x^{3} \Rightarrow(f \cdot g)(x)=x^{2} \cdot x^{3}=x^{5}
$$

4 $(f / g)(x)=f(x) / g(x) \quad($ require $g(x) \neq 0)$

$$
\Rightarrow(f / g)(x)=x^{2} / x^{3}=\frac{1}{x}
$$

Rmk: - Doman of $f+g=1 \operatorname{dom}(f) \cap \operatorname{dom}(g)$

$$
\begin{aligned}
& \text { cs } f=\frac{1}{x}, g(x)=\frac{1}{x-1} \\
& (f+g)(x)=\frac{1}{x}+\frac{1}{x-1} \\
& \text { - } f-g= \\
& f \cdot g= \\
& f / g=\operatorname{dom}(f) \cap \operatorname{dom}(g) \cap\{x \mid g(x) \neq 0\} \text {. }
\end{aligned}
$$

Ex: $\quad f(x)=\frac{1}{x-3}, \quad g(x)=\sqrt{x}$
Question: a) What is the dom. of $f-g$?
b) - - - - \quad - $/ g$?
c) "- " - " $g(f$?

Answers a) $\{x \mid x \geqslant 0$ and $x \neq 3\}$
b) $\{x \mid x \geqslant 0$ and $x \neq 3$ and $x \neq 0\}$

$$
=\{x \mid x>0 \text { and } x \neq 3\} \text {. }
$$

c) $\{x \mid x \geqslant 0$ and $x \neq 3\}$

$$
\left.\begin{array}{l}
x / 2 \\
f(x)=x \\
g(x)=2
\end{array}\right\} \quad f / g=\frac{x}{2}
$$

