Lecture \# 7

Warmup: 1)

Consider the function whose graph is given above. What is
a) its domain $[-7,-3) \cup[-2,6]$
b) its range $[-4,-2) \cup(-1,4] \cup 5$.
c) values of x w/ loc. max
d) . . - Voc. min.
2) Graph the following function

$$
f(x)=\left\{\begin{array}{cc}
x-3, & -5 \leq x \leq-2 \\
-2 x, & -2<x<2 \\
7, & 2 \leq x \leq 5
\end{array}\right.
$$

$$
y^{2}=x
$$

Section 2.4

RinK: (rate of change)
RoK: Average speed $=$ dist. travels/time travelled. f is a ton w/ $f(t)=$ dist car travels, then $\left(\begin{array}{c}\text { aver rate of chang } \\ \text { of } f \text { from } \\ a=\text { time } 1, b=\text { time } 2\end{array}\right)=\frac{f(b)-f(a)}{b-a}$

Deft: the ave. rate of change of a for of from a to be is $\frac{f(b)-f(a)}{b-a}=\frac{\text { net change } f \text { tree a tob }}{b-a}$

Ex: $f(x)=x^{2}$ from 0 to 2.

$$
\begin{aligned}
& a b=2, a=0 \\
& \quad \frac{f(2)-f(0)}{2-0}=\frac{2^{2}-0^{2}}{2}=\frac{4}{2}=2
\end{aligned}
$$

$$
f(x)=\frac{1}{x^{2}+1} \text { from }-1 \text { to } 3
$$

$$
\Leftrightarrow \begin{aligned}
\frac{f(3)-f(-1)}{3-(-1)} & =\frac{\frac{1}{10}-\frac{1}{2}}{4} \\
& =\frac{\frac{1}{10}-\frac{5}{10}}{4} \\
& =\frac{1}{40}-\frac{5}{40} \\
& =\frac{-4}{40} \\
& =\frac{-1}{10}
\end{aligned}
$$

Picture:

Slope of the secant line is the ave. rate of change of f form a to b.
Ex:

Section 2.6

Rok: Vertical Shifting
Graph of the equ $y=f(x) \pm c$, then the graph is the graph of $y=f(x)$ shirted up/ down by c.

$$
\begin{aligned}
\Leftrightarrow \quad f(x) & =x^{2} \\
f(x) & =x^{2}-\frac{1}{2} \\
f(x) & =x^{2}+1
\end{aligned}
$$

Rok: Horizental shifting.
The graph of $y=f(x \pm c)$ is the graph of $f(x)$ shifted hor. to the left/right by c.
\& $f(x)=x^{2}$

$$
\begin{aligned}
& f(x-1)=(x-1)^{2} \\
& f(x+1)=(x+1)^{2}
\end{aligned}
$$

$$
\text { Ex: } \quad f(x)=(x-3)^{2}+4=g(x-3)+4 \leadsto \text { shit t up by } 4
$$

$$
g(x)=x^{2}
$$

\leftrightarrow shift right by 3

$$
\text { Ex: } \begin{array}{rlrl}
f(x) & =\sqrt{x+2}-1 ; g(x)=\sqrt{x} \\
& =g(x+2)-1, & &
\end{array}
$$

Ex: $\quad f(x)$ have the following graph What is the graph of $f(x-1)-4$

Rok: Reflecting graphs
$y=-f(x) \Rightarrow$ graph of $f(x)$ reflected across the x-axis

$$
y=f(-x) \Rightarrow \quad \cdots \quad \cdots \quad-\quad-\quad \text { - } \quad \text {-axis. }
$$

$$
\Leftrightarrow f(x)=x^{2}
$$

$$
\begin{aligned}
& f(x)=x \\
& g(x)=-f(x)=-x^{2} \\
& h(x)=f(-x)=(-x)^{2}=x^{2}(x)^{2}=1 \cdot x^{2}
\end{aligned}
$$

$$
h(x)=f(-x)=(-x)^{2}=x^{2}
$$

$4 f(x)=\sqrt{x}$

$$
g(x)=\sqrt{-x}=f(-x)
$$

Ex:

$$
\begin{aligned}
& f(x)=(-x+1)^{2}-2 \\
& h(x)=x^{2} \\
& g(x)=h(-x) \\
& \text { So } f(x)=g(x-1)-2
\end{aligned}
$$

We obtain the graph of g from the graph of h by reflecting across the y-axis. (so it doesn't change)
We obtain the graph of f from the graph of g by shifting to the right by 1 and down by 2

Ex: $f(x)=1+(x+2)^{2}$

$$
g(x)=x^{2}
$$

Ex: Additional example bloc of my mess up.

$$
f(x)=\sqrt{-x+2}-1
$$

We would like to obtain the graph of $f(x)$ from the graph of

$$
h(x)=\sqrt{x}
$$

Notice that

$$
\begin{aligned}
f(x) & =h(-x+2)-1 \\
& =h(-(x-2))-1
\end{aligned}
$$

Let $g(x)=h(-x)$, then

$$
f(x)=g(x-2)-1
$$

So we get the graph of f from the graph of g which we get from the graph of h

