Lecture *6

Defn: (Correction) A graph in the plane is sym urt the origin if (x, y) is in the graph

$$
\Rightarrow(-x,-y) \cdots \cdots
$$

c Rotating the graph by 180° takes it into/ento itself.

$$
\rightarrow E x:
$$

 sym ort origin

Rm: $\quad x^{2}+a x+y^{2}+b y=c$
\rightarrow It could be a circle ($r>0$)

| u | " | " | " point | $(r=0)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \rightarrow | | | | |

Ex: $\quad x^{2}-4 x+y^{2}=10$
\rightarrow Write it as $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$

$$
\begin{aligned}
& x^{2}-4 x+4+y^{2}=14 \\
& (x-2)^{2}+y^{2}=14
\end{aligned}
$$

\rightarrow circle centred at $(2,0)$ w/ radius $\sqrt{14}$

$$
\text { Ex: } \quad \underbrace{(x-777)^{2}+\frac{(y-888)^{2}}{\longrightarrow}}_{\longrightarrow} \text { both have to be zero. }
$$

$(777,888)$ is this the graph

Ex: $\quad \frac{(x-7)^{2}}{v}+\frac{(y-42)^{2}}{v}=-43$
\Rightarrow LHS $\geqslant 0$, but RHS <0
$\Rightarrow N_{0}$ solis
\Rightarrow graph is nothing!

Rok: $1.10=$ graphing linear equs (may wont to review)

Section 2.1

Defies: A function is a rule that assigns each number in a set A to exactly one \#in a set B.
\rightarrow Write $f: A \rightarrow B$
\Leftrightarrow Ex: f (time) $=$ ave. temperature
$f($ date $)=$ \# of people alive w/ 11 fingers.
f (time worked) $=$ amount of money made.
\rightarrow fan takes inputs to outputs

Ex: $\quad f(x)=x \Rightarrow f$ takes the \#x to the \#x.

$$
\begin{aligned}
& f(2)=2 \\
& f(3)=3 \\
& f(542)=542
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& f(x)=x^{2} \Rightarrow \\
& f(0)=0^{2}=0 \\
& f(2)=2^{2}=4
\end{aligned}
$$

Ex: $f(x)=5 \Rightarrow f \cdots \Rightarrow x$ to ven $\# 5$

$$
\begin{aligned}
& f(7)=5 \\
& f(55)=5 \\
& f(66)=5
\end{aligned}
$$

EX:

$$
\begin{aligned}
& f(x)=\sqrt{x}+x-7 \\
& f(0)=\sqrt{0}+0-7=-7 \\
& f(9)=\sqrt{9}+9-7=3+9-7=5
\end{aligned}
$$

Ex: $\begin{aligned} & f(x)=\frac{1}{1+x^{2}} \\ & f(-1000)=\text { is very small }\end{aligned}$

$$
f(1000)=\cdots \quad-\quad \text { big }
$$

f between $-1,1$ is a bump.

Defn: $f(x)$ is the valuelimage of f at x
$f: A \rightarrow B, A$ is called the domain of f
The range of f is the set of all possible values of f. x is called the ind. variable
$y=f(x), y$ is dep, variable

Ex: $f(x)=4 x^{2}+3 \quad$ plug in and make sense.
c) What is dom.: is all real

$$
\begin{aligned}
& \text { range: }[3,+\infty) \\
& \Leftrightarrow 4 x^{2} \geqslant 0,3 \geqslant 3 \Rightarrow f(x) \geqslant 3 \\
& \Leftrightarrow f(5)=103 \quad\{x(x \geqslant 0\}=[0,+\infty)
\end{aligned}
$$

$$
\begin{aligned}
\text { Ex: } \quad f(x) & =\frac{1}{\sqrt{x}}, \quad \operatorname{Dom}=(0,+\infty)=\{x \mid x>0\} \\
& \Leftrightarrow \frac{t}{t} \Rightarrow \text { Range }=(0,+\infty)
\end{aligned}
$$

Def: The net change of f form a to b is

$$
f(b)-f(a)
$$

Ex: Net charge of $f(x)=|x-3|$ from -3 to 3 .

$$
\begin{aligned}
f(3)-f(-3) & =|3-3|-|-3-3| \\
& =|0|-|-6| \\
& =-6
\end{aligned}
$$

Ex: Piece-wise

$$
\begin{aligned}
& f(x)= \begin{cases}x^{2}, & x \leq 0 \\
x & ,\end{cases} \\
& \Leftrightarrow f(-1)=1 \\
& f(2)=2 \\
& f(-17)=289=(-17)^{2} .
\end{aligned}
$$

Section $1.2 / 1.3$

Deft: The graph of $f=\{(x, f(x)) \mid x$ is in don. of 7$\}$.

Ex: $\quad f(x)=x$

$$
f(x)=x^{2}
$$

$$
\text { Ex: } \quad f(x)=\left\{\begin{array}{cc}
x^{2}, & x \leqslant 1 \\
2 x+1, & x>1
\end{array}\right.
$$

Question: When do equs data fans?

$$
\Rightarrow \quad y-2 x=0 \quad \rightarrow \quad y=2 x, \quad f(x)=y=2 x
$$

Cs we could solve uniquely for y in tams of $x \Rightarrow$ we get

$$
\Leftrightarrow y^{2}=x \rightarrow y= \pm \sqrt{x}
$$

\leftrightarrow couldr't uniquely solve \Rightarrow wo for.

Rok: Vertical line test
A graph of an eqn in x, y 's defines a tan if every vertical line meets the graph at most once.

Ex: $\quad y^{2}=x$

Rok: i) height of f at x is the value of f at x. \Rightarrow all possible heights $=$ rouge

Range $=$ all possible heights $=[-2,3]$
Dom. = all values x w/ the graph is above it.

$$
=\{x \mid-5 \leq x \leq 6 \text { and } x \neq-3\}
$$

Deft: $f(a)$ is a loo. max. value if $f(a) \geq f(x)$ for all x "nearby" a. a is called a bloc. max. \#

$$
f(a) \leq f(x) \text {. }
$$

Rok: Graphs \leadsto you tell when f is inc. versus dec.

$$
=y
$$

f, g two fan $f(x) \geqslant g(x) \Rightarrow$ graph of f at x is below above the graph of g at x same point

