Lecture \#5

Warmups: 1) Susan wants to make a garden on a rectangular lot that's length is twice its width.
She wants a path that is 2 ft . wide going around the garden. If she wants the garden to be $268 \mathrm{ft}^{2}$ and the lot to contain both the garden and the path, what width must the rectangular lot be?

$$
2 \omega=l_{\text {eng th }}
$$

83

Area of lot $=2 \omega^{2}$
area of path + area of garden
So if we solve for lathers in terms of w, we have u eqn that we can solve.
Area of gard $=268$

$$
\begin{array}{ll}
& R I=2 w, R 3=2 w \\
& R 2=2 \cdot(2 w-4)=4 w-8=R 4 \\
\Rightarrow & 2 w^{2}=4 w+8 w-16+268 \\
\Rightarrow & w^{2}=2 w+4 w-8+134 \\
\Rightarrow & w^{2}=6 w+126 \\
\Rightarrow & w^{2}-6 w-126=0
\end{array}
$$

Quad form \Rightarrow

$$
\begin{aligned}
w & =\frac{6 \pm \sqrt{36+4(126)}}{2} \\
& =3 \pm \sqrt{540} / 2
\end{aligned}
$$

What is ω ?

$$
\text { Answer: }\langle 3+\sqrt{540} / 2) \mathrm{ft}^{2}
$$

2) If Alex can mow the lawn in 5 hours and Alex and Mike together can mow the lawn in 2 hour, then how long would it take Mike to mow the lawn by himself? $=x$
Amount mowed $=$ (time spent mowing) - sate of knowing.
Alex's rate is 1 lawn / 5 hr .

$$
\begin{aligned}
& \text { Alex's rate }+ \text { Mike's rate }=1 \text { lawn/2hr. want to solve } \\
& 1 / 5+1 / x=1 / 2 \\
& 2 x+10=5 x \\
& \Rightarrow 3 x=10 \\
& \Rightarrow x=\frac{10}{3}
\end{aligned}
$$

So Mike can now I law in $10 / 3$ hours.

Section 1.8: Inequalities

Rink: Howe forward like we do w/ eqn

- rearrange and slue; however, we need to be careful about "-"-signs.

$$
\begin{aligned}
& \Leftrightarrow x=3 \Rightarrow-x=-3 \\
& \rightarrow \quad 3 \leq 5 \neq 5 \quad-3 \leq-5 \\
& \Rightarrow-5 \leq-3 \text { or }-3 \geq-5 \\
& \text { c } x \leqslant 42 \Rightarrow-x \geqslant-42
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& 4 x \leq 19 x-4 \\
\Rightarrow & -15 x \leq-4 \\
\Rightarrow & 15 x \geqslant 4 \\
\Rightarrow & x \geqslant 4 / 15
\end{aligned}
$$

Ex: $\quad 4 \leq 4 x-2<5$
Wo breate it up into two problems

$$
\begin{aligned}
& 4 \leq 4 x-2 \Rightarrow 6 \leq 4 x \Rightarrow \frac{2}{3} \leq x \\
& 4 x-2<5 \Rightarrow 4 x<7 \Rightarrow x<\frac{7}{4}
\end{aligned}
$$

\Rightarrow soln are: $\frac{2}{3} \leq x<\frac{7}{4}$
combine results at end.

Ex: $\quad(x-2)(x-3) \leq 0$
Step 1: Solve for when it is zero.
zero are $x=2, x=3$

Stop 2 :

Region	Sign.
$x \leq 2$	+
$2<x<3$	-
$x \geqslant 3$	+

Step 3: x has to be in $[2,3]=$

Rok: $\frac{x-1}{x+1}>0 \leadsto$ fractional equ, we do work in same manner: find zeros, and undefined points.

Rok: $|x| \leq c \Rightarrow-c \leq x \leq c$

$$
|x| \geqslant c \Rightarrow x \leq-c \quad \text { or } x \geqslant c
$$

Ex: $|3 x-2| \geqslant 4 \Rightarrow \quad 3 x-2 \leq-4$ or $3 x-2 \geqslant 4$

$$
\Rightarrow x \leq \frac{-2}{3} \quad \text { or } \quad x \geqslant 2
$$

Section: The Coordinate Plane

Defn: The coord. plane is the set of pairs of real numbers

$$
\begin{aligned}
& \mathbb{R}^{2}=\{(x, y) \mid x \text { and } y \text { are } \# s\} \\
& \leadsto \mathbb{R}=\begin{array}{llll}
1 & 1 & 1 \\
-4 & -1 & 0 & 1
\end{array} \\
& \leftrightarrow \mathbb{R}^{2}
\end{aligned}
$$

Origin is the point $(0,0)$
x-axis the points $(x, 0)$ ranging our all $x \leadsto y=0$

$$
y \text {-axis " " }(0, y) \quad \cdots \quad \text { - } y
$$

There are 4 quadrants I, II, III, IV

Ex: Drawing regions in plane
i) $\{(x, y) \mid$

ii) $\{(x, y) \mid x y=0\}$
iii) $\{(x, y)||x|=1\}$

Def: dist between two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ is

$$
\text { Pathag } \Rightarrow d^{2}=b^{2}+h^{2}
$$

\leftrightarrow dist of $(1,1)$ from $(0,0)=$ origin

$$
\begin{aligned}
& \text { dist }=\sqrt{(1-0)^{2}+(1-0)^{2}} \\
&=\sqrt{1+2} \\
&=\sqrt{2} \\
& d
\end{aligned}
$$

Deth: Midpoint between $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ is the point

$$
\left(\frac{x_{0}+x_{1}}{2}, \frac{y_{0}+y_{1}}{2}\right)
$$

cs average of the coordinates
\rightarrow Ex: $(-1,0)$ and $(1,0)$

$$
M P=\left(\frac{-1+1}{2}, \frac{0+0}{2}\right)=(0,0)
$$

\rightarrow

$$
\left(x_{1}, y_{0}\right)
$$

Ex: Graphs of eqns:
is $x^{2}=y$, we can plot the pts that satisfy this eq

Deft: Symmetric urt x-axis if (x, y) in graph $\Rightarrow(x,-y)$ in
 graph

Symmetry wat origin (or the line $y=-x$) if $(x, 1)$ in $g i p^{\prime}=(-x,-y)$ in graph

Rok: Croce in the plane is the points that ave fixed dist'trom a point $\left(x_{0}, y_{0}\right)$
\& What is this region
$\left\{(x, y) \mid\right.$ dist (x, y) to $\left(x_{0}, y_{0}\right)$ is $\left.r\right\}$

$$
r^{2}=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}
$$

4) Eqn of circle centered at $\left(x_{0}, y_{0}\right)$ w/ radius r. 2. circle of radius 5 centred at $(0,0)$.

$$
\rightarrow \quad 16=(x-1)^{2}+(y-1)^{2}
$$

$$
\begin{array}{r}
\rightarrow \quad 20+x^{2}-6 x+y^{2}-7 x=0 \\
1.1-1.5,1.7-1.9,2.1-2.3
\end{array}
$$

