Lecture *24

Warm-up: 1) Convert the following equation from polar coords to Cart. coors:

$$
r=\frac{\tan (\theta)}{\cos (\theta)+1}
$$

$$
\begin{aligned}
& r \sin (\theta)=y \\
& r \cos (\theta)=x \\
& \tan (\theta)=y / x \\
& r^{2}=x^{2}+y^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& r=\frac{\tan (\theta)}{\cos (\theta)+1} \\
\Rightarrow & r \cos (\theta)+r=\tan (\theta) \\
\Rightarrow & x+r=y / x \\
\Rightarrow & r=\frac{y}{x}-x \\
\Rightarrow & r^{2}=(y / x-x)^{2} \\
\Rightarrow & x^{2}+y^{2}=(y / x-x)^{2} .
\end{aligned}
$$

Topic: Graphing Fens in General

1) x-int, y-int.
2) Asymptotes (ier, hor.)
\rightarrow tam has var asym when $\cos =0$
cot " - $\quad-\quad \sin =0$
\leadsto Rat'l fan \rightarrow vera asy \leftrightarrow zeros of the denom.
$\Leftrightarrow \quad \log _{2}(x)$ has a ver any along $x=0$.
\Leftrightarrow Parl fou have kor sym.
$\rightarrow a^{x}$ has a hor asym along $y=0$

$$
\text { as } x \rightarrow-\infty \quad(a>1) .
$$

3) Sign (is graph above or below x-axis) \rightarrow test points.
4) End behavior
\rightarrow what happas as $x \rightarrow+\infty$

$$
\cdots \quad-\quad \quad \quad-\quad-\infty .
$$

4 odd deg poly w/ lead coef I

$$
\begin{aligned}
& \text { as } x \rightarrow+\infty, \quad f(x) \rightarrow+\infty \\
& x \rightarrow-\infty \quad, \quad f(x) \rightarrow-\infty \\
& \Leftrightarrow \quad x^{5}+22 x-7
\end{aligned}
$$

$a \cdot x^{n}$ (sign of a will poss flip graph)

$$
\begin{array}{r}
\text { as } x \rightarrow+\infty, x^{2} \rightarrow+\infty \\
-\cdots,-2 x^{2} \rightarrow-\infty . \\
\text { as } x \rightarrow-\infty, x^{3} \rightarrow-\infty . \\
\cdots-2 x^{3} \rightarrow+\infty . \\
\rightarrow a^{x}, \text { as } x \rightarrow+\infty, a^{x} \rightarrow+\infty \\
\log _{a}(x) \text { as } x \rightarrow+\infty, \log _{a}(x) \rightarrow+\infty .
\end{array}
$$

5) Domain and range.

Ex: $\log \left(x^{2}+2 x-2\right)=f$ what does the sraple cooke like.
\leftrightarrow End behavior: as $x \rightarrow-\infty$.

$$
\begin{aligned}
& x^{2} \rightarrow+\infty \\
& \Rightarrow x^{2}+2 x-2 \rightarrow+\infty \\
& \Rightarrow \log \left(x^{2}+2 x-2\right) \rightarrow+\infty .
\end{aligned}
$$

as $x \rightarrow+\infty$.

$$
\begin{aligned}
& x^{2}+2 x-2 \rightarrow+\infty \\
& \Rightarrow \log \left(x^{2}+2 x-2\right) \rightarrow+\infty
\end{aligned}
$$

\leadsto Dom: $\log ($ numbers $<0)$ is undefined. S. is $x^{2}+2 x-2<0$ for some x.

For $x=0,\left(^{L}\right)<0$
$\Rightarrow f(0)$ is undefined.

Topic: Graphing Rat'l Functions
Important feature: intercepts, dom, range? end Lehav. asymptotes, sign
Ex: $\frac{(2 x+2)(x+2)}{(x-1)(x-2)}=f(x)$

- x-int $=x=-2$ or $x=-1$
- y -int $=p^{\text {lug in }} 0!\quad(0, f(0))$

$$
f(0)=\frac{2 \cdot 2}{(-1) \cdot(-2)}=2 .
$$

$$
\Rightarrow \quad(0,2)
$$

- ver asym $=x=1$ or $x=2$.
- hor arym $=y=2$
$\therefore P / Q=7$
If $\operatorname{dog}(P)<\operatorname{deg}(Q) \Rightarrow y=0$ is has. asym If $\operatorname{deg}(P)=\operatorname{deg}(Q) \Rightarrow y=\frac{\text { leading corft } P}{\cdots-Q}$.
is hor asym.
If $\operatorname{deg}(P)>\operatorname{deg}(Q) \Rightarrow$ no hor asym. end beh. of f is end beh. of P up to a sign

Ex: Given the graph of the fan 7

Give a rat'l foo w/ the same intercepts, asym and sighs of the ten f.

$$
\text { Ex: } \quad f(x)=\left\{\begin{array}{cl}
x^{2}, & 0 \leq x \leq 3 \\
x-4, & 3<x \leq 5
\end{array}\right.
$$

Topic: Inverses

1) Fan is $1-t_{0}-1$ iff it passes hos. line test. iff Eon is invertible.
2) Graph f^{-1} is the graph of f reflected across $y=x$.

3) Ex: $f(x)=\frac{1+x}{2+3 x}$

Solve for inverse.
(1) Replace $y=f(x)$

$$
y=\frac{1+x}{2+3 x}
$$

(2) Solve for x in terms of y.

$$
\begin{aligned}
& \Rightarrow(2+3 x)(y)=1+x \\
& \Rightarrow 2 y+3 x y=1+x \\
& \Rightarrow 2 y-1=x-3 x y=x(1-3 y)
\end{aligned}
$$

$$
\left.\Rightarrow x=\frac{2 y-1}{1-3 y}\right\}
$$

(3) Set $f^{-1}(y)=(\sqrt{ })$.

$$
\begin{aligned}
E_{x}=\quad f(x) & =\frac{f^{-1}(y)=\frac{2 y-1}{1-3 y}}{2+3 x^{3}} \\
& \Rightarrow x^{3}=\frac{2 y-1}{1-3 y} \\
& \Rightarrow x=3 \sqrt{\frac{2 y-1}{1-3 y}}
\end{aligned}
$$

Ex: Find inverse of

$$
f(x)=\log _{e}\left(\frac{1+x}{2+3 x}\right)
$$

Topic: 1) $\log _{a}(x)$ is the inverse of a^{x}.

$$
\Leftrightarrow \text { i) } a^{\log _{a}(x)}=x
$$

ii) $\log _{a}\left(a^{x}\right)=x$
iii) $\log _{a}(1)=0 . \quad a^{0}=1$.

$$
\left(\begin{array}{l}
a^{<1} \\
(1 / 2)^{x}
\end{array}=\frac{1}{2^{x}}\right.
$$

2) Graphs

cs reflect. a^{k}
3)

$$
\begin{aligned}
& \log _{a}(A \cdot B)=\log _{a}(A)+\log _{a}(B) \\
& \log _{a}(A / B)=\log _{a}(A)-\log _{a}(B) \\
& \log _{a}\left(A^{C}\right)=C \cdot \log _{a}(A) \\
& \text { Waning }: \log (A+B) \neq \log (A)+\log (B) .
\end{aligned}
$$

\leftrightarrow Combine everything to a single expression

$$
\begin{aligned}
& 2 \log (a)-\log (b)-\log \left(a^{2}\right) . \\
= & \log \left(a^{2}\right)-\log (b)+\log \left(a^{2}\right) \\
= & \log \left(a^{2} \cdot a^{2}\right)-\log (b) \\
= & \log \left(a^{4}\right)-\log (b) \\
= & \log \left(a^{4} / b\right) .
\end{aligned}
$$

