Lecture \# 2

Recall: Last time s review arithmetic; add, sub, fraction, mull, etc.
This time \leadsto powers of \#s and roots
\leadsto Algebraic expression

Defh: $a^{n}=\frac{a \cdot \ldots \cdot a}{n-t i m e s}$, where $a=$ seal \#,n is nat. \#>0

$$
\begin{aligned}
& \Leftrightarrow 2^{3}=2 \cdot 2 \cdot 2=4 \cdot 2=8 \\
& \Leftrightarrow 2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32 \\
& \Leftrightarrow 3^{3}=27
\end{aligned}
$$

a is called the base and u is called the exponent

Defn: i) $a^{0}=1$ when $a \neq 0$
ii) $a^{-n}=\frac{1}{a^{n}}$
$\rightarrow 42^{\circ}=1$
$\rightarrow 7777^{\circ}=1$
4) $2^{-2}=\frac{1}{2^{2}}=\frac{1}{2 \cdot 2}=\frac{1}{4}$

$$
\Leftrightarrow \quad\left(\frac{2}{3}\right)^{-3}=\frac{1}{(2 / 3)^{3}}=\frac{14}{\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}}=\frac{1}{8 / 27}=\frac{27}{8}
$$

Rule: i)

$$
\begin{aligned}
& a^{n} \cdot a^{m}=a^{n+m} \\
& \leftrightarrow 2^{2} ; 2^{3}=2^{5}=32 \\
& (2 \cdot 2) \cdot(2 \cdot 2 \cdot 2)=4 \cdot 8=32
\end{aligned}
$$

ii)

$$
\begin{aligned}
& a^{n} / a^{m}=a^{n} \cdot a^{-m}=a^{n-m} \\
& \Leftrightarrow 2^{2} / 2^{3}=2^{2-3}=2^{-1}=\frac{1}{2}
\end{aligned}
$$

$$
4 / 8=1 / 2
$$

iii) $\left(a^{m}\right)^{n}=a^{m \cdot n}$

$$
\Leftrightarrow\left(2^{2}\right)^{2}=(2 \cdot 2)^{2}=(2 \cdot 2)(2 \cdot 2)=2^{4}
$$

iv)

$$
\begin{aligned}
& (a b)^{n}=a^{n} \cdot b^{n} \\
& \Leftrightarrow(2 \cdot 7)^{2}=2^{2} \cdot 7^{2}=4 \cdot 49=196 \\
& 14^{2}=196
\end{aligned}
$$

Rank: Similar rules for fractions.

Ex: Simplify the following:

$$
\begin{aligned}
\left(\frac{x^{4}}{y^{4}}\right)^{3} \cdot\left(\frac{y^{2} x^{2}}{x z}\right)^{-2} & =\frac{x^{3}}{y^{3}} \cdot\left(\frac{y^{2} x^{2}}{x z}\right)^{-2} \\
& =\frac{x^{3}}{y^{3}} \cdot\left(\frac{x^{\prime} z^{4}}{y^{2} x^{2}}\right)^{2} \\
& =\frac{x^{3}}{y^{3}} \cdot \frac{x^{2} z^{2}}{\left(y^{2}\right)^{2}\left(x^{2}\right)^{2}} \\
& =\frac{x^{3}}{y^{3}} \cdot \frac{x^{2} z^{2}}{y^{4} \cdot x^{4}} \\
& =\frac{x^{5} z^{2}}{y^{7} \cdot x^{4}} \\
& =x z^{2} / y^{7}
\end{aligned}
$$

Ex: sim. $\frac{6 s t^{-3}}{\left(s^{-2} t^{4}\right)^{3}}=\frac{6 s t^{-3}}{\left(s^{-2}\right)^{3} \cdot\left(t^{4}\right)^{3}}$

$$
=\frac{65 t^{-3}}{s^{-6} t^{12}}
$$

$$
\begin{aligned}
& =\frac{6 s}{s^{-6} t^{12} \cdot t^{3}} \\
& =\frac{6 s}{s^{-6} \cdot t^{15}} \\
& =\frac{6 s \cdot s^{6}}{t^{15}} \\
& =6 s^{7} / t^{15}
\end{aligned}
$$

Def: The principal $w^{\text {th }}$ root, $\sqrt[n]{a}=b$ st $b^{n}=a$
\leadsto this called radical notation
\leftrightarrow If $n=$ even, then $a \geqslant 0, b \geqslant 0$.
c) $\sqrt{-1}=b \Rightarrow b^{2}=-1 \leadsto b$ does not exist.
$\rightarrow \sqrt{4} ; 2^{2}=4,(-2)^{2}=4$
Ex: $\quad 4 \sqrt{81}=3 ; 3 \cdot 3 \cdot 3 \cdot 3=9 \cdot 9=81$

$$
\sqrt{4^{2}}=4 ; \quad 4 \cdot 4=4^{2}=16
$$

$$
\sqrt{16}
$$

Rule: i) $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
$\Rightarrow \sqrt{4 \cdot-9}=\sqrt{4} \cdot \sqrt{9}=2 \cdot 3=6$

$$
\sqrt{36}=6
$$

ii) $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
iii) $\sqrt[m]{\sqrt[n]{a}}=\sqrt[n \cdot m]{a}$

$$
\Leftrightarrow \sqrt[2]{\sqrt[2]{81}}=4 \sqrt{81}=3
$$

$$
\sqrt{9}=3
$$

iv) when n is odd $n \sqrt{a^{n}}=a$
v) . " even, $\sqrt{a^{n}}=|a|$
$\Leftrightarrow n=2, a=-2$;

$$
\begin{aligned}
& \sqrt{(-2)^{2}}=\sqrt{4}=2=|-2| \\
& n=3, a=-2 ; \\
& \sqrt[3]{(-2)^{3}}=\sqrt[3]{-8}=-2
\end{aligned}
$$

$$
\left.\begin{array}{c}
(-2 \cdot(-2) \cdot(-2) \\
=-8
\end{array}\right)
$$

$$
\frac{a^{2}}{a^{10}}=a_{-z}^{3-10}
$$

$$
=a^{-z}
$$

$$
=\frac{1}{a^{7}}
$$

$\frac{2}{4}$ is not lowest terms; $\frac{n}{4}=\frac{1}{2}$
Defn: m / n in lowest terms, $n>0$,

$$
\begin{aligned}
& a^{m / n}=(\sqrt[n]{a})^{m} \\
\Leftrightarrow m=1 ; & a^{1 / n}=\sqrt[n]{a}
\end{aligned}
$$

\leftrightarrow All the previous cults for exponentials had for these fractional exponents

$$
\begin{array}{ll}
& \leadsto a^{m / n} \cdot a^{k / e}=a^{\frac{m}{n}+\frac{k}{2}} . \\
& n=\text { even, } a>0 \leadsto n \sqrt{a} \quad n=\text { even } \Rightarrow a>0 .
\end{array}
$$

$$
\begin{aligned}
& \text { Ex: } \sqrt[7]{\sqrt{\frac{a^{3}}{a^{10}} \cdot b^{2}}}=\sqrt[7]{\frac{b}{b}} \frac{b^{2}}{a^{7} \sqrt{b}} \\
& =\frac{7 \sqrt{b^{2}}}{\sqrt[7]{\sqrt{a^{7}}}-\sqrt[7]{\sqrt{b}}} \\
& =\frac{7 \sqrt{b^{2}}}{a \sqrt[7]{\sqrt{b}}} \\
& =7 \sqrt{b^{2}} /((a) \cdot(14 \sqrt{b}))
\end{aligned}
$$

Ex: i) $125^{-1 / 3}=\frac{1}{125^{1 / 3}}=\frac{1}{7 \sqrt{125}}=\frac{1}{5}$
ii) $\left(a^{3} \cdot b^{4}\right)^{3 / 2}=a^{9 / 2} \cdot b^{6}=\sqrt{a^{9}} \cdot b^{6}$

Ex: Rationalize Denominators
i) $\frac{2}{\sqrt{5}}$ as $\frac{\text { number }}{\text { something w/ out radial }}$

$$
\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{2 \sqrt{5}}{(\sqrt{5})^{2}}=\frac{2 \sqrt{5}}{5^{2 / 2}}=\frac{2 \sqrt{5}}{5}
$$

ii)

$$
\begin{aligned}
\frac{3}{4 \sqrt{x^{5}}}=\frac{3}{x^{4 / 5}} \cdot \frac{x^{1 / 5}}{x^{1 / 5}}=\frac{3 x^{1 / 5}}{x^{\frac{4}{5} \cdot \frac{1}{5}}} & =\frac{3 x^{1 / 5}}{x^{1}} \\
& =\frac{3 \cdot(5 \sqrt{x})}{x}
\end{aligned}
$$

Section 1.3: Algebraic Expressions

Deft: A variable is a letter that denotes any real number

Deft: An alg. expression is a sum, power, root, div., etc of variables

$$
\text { us Ex: } \begin{aligned}
& 2 x^{2}+x-3 \\
& \frac{x^{2} y^{3}}{\sqrt[5]{z}}-24 x+a^{7777} \\
& \frac{w z+a b}{a b+x z}
\end{aligned}
$$

Defoe A polynomial of degree n is an alg. expression of

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{\prime}+a_{0}
$$

where $a_{i}=$ some seal $\#, x$ is our variable, $a_{n} \neq 0$.

$$
\begin{aligned}
& 7 x+3, \operatorname{deg}=1 \\
& 8 x^{3}+42 x-7, \operatorname{deg}=3 \\
& x^{2}-2 x+1, \operatorname{deg}=2 \quad \text { (quadratic polynomials) }
\end{aligned}
$$

Rok: We can add poly.

$$
\begin{aligned}
\therefore & \left(3 x^{4}+x^{2}+7\right)+\left(7 x^{4}+x^{3}-77 x+8\right) \\
& =10 x^{4}+x^{3}+x^{2}-77 x+15
\end{aligned}
$$

We can mull poly

$$
\omega(x-1)(x+1)=x^{2}+x-x-1=x^{2}-1
$$

Rink: Book has a lot if formulas \leadsto ignore these. or more gen alg expressions
Deft: Undoing the prod of poly is called factoring 4 parts are called the factors

$$
\leftrightarrow E_{x}: x^{2}-25=(x+5)(x-5)
$$

Ex: $\quad 4 x^{2}-8 x=x(4 x-8)=4 x(x-2)$

Ex: $\quad 8 x^{6} y^{3}+6 x^{3} y^{3}+8 x^{3}+6$

$$
\begin{aligned}
& =y^{3}\left(8 x^{6}+6 x^{3}\right)+\left(8 x^{3}+6\right) \\
& =y^{3} x^{3}\left(8 x^{3}+6\right)+\left(8 x^{3}+6\right) \cdot 1 \\
& =\left(8 x^{3}+6\right)\left(y^{3} x^{3}+1\right)
\end{aligned}
$$

Ex: Factoring Quads via Trial and Error
wart to solve for

$$
\begin{aligned}
x^{2}-7 x+10 & =(x+s)(x+r) \cdot \\
& =x^{2}+r x+s x+r s \\
& =x^{2}+(r+s) x+r s \\
\Rightarrow-7=r+s & , 10=r s
\end{aligned}
$$

By observation, $r=-2, s=-5$

$$
(x-2)(x-5)=x^{2}-2 x-5 x+10=x^{2}-7 x+10
$$

Ex:

$$
\begin{aligned}
& x^{2}-2 x+1=(x+s)(x+r)=(x-1)^{2} \\
& \Rightarrow-2=r+5,1=r s . \\
& \Rightarrow r=-1, s=-1
\end{aligned}
$$

Ex: Factor alg, exp. that look like quad

$$
\begin{aligned}
& \text { cs } \left.3 x^{4 / 3}-6 x^{1 / 3}+6 x^{-2 / 3}\right\} \text { Idea, pull dido. } \\
& =x^{-2 / 3}\left(3 x^{6 / 3}-6 x^{1}+6\right) \text { first/factor. } \quad x^{3}+x^{2}+x \\
& =x^{-2 / 3}\left(3 x^{2}-6 x+6\right) \\
& =3 x^{-2 / 3}\left(x^{2}-2 x+2\right) \\
& \text { = factor this... further. }
\end{aligned}
$$

