Lecture \# 15

Ch. 4: Exponential functions and logarithmic fans

Defn: The exponential fan ware $a(a \neq 0, a>0)$ is

$$
f(x)=a^{x}
$$

Ex: $\quad a=2, a=3, a=\frac{1}{2}$

$$
f(x)=2^{x}
$$

$$
2^{-x}=\frac{1}{2^{x}}=\left(\frac{1}{2}\right)^{x}
$$

$$
f(x)=3^{x}
$$

$$
f(x)=\left(\frac{1}{2}\right)^{x}
$$

Remark: $a>1 \Rightarrow Y$

- $a<1 \Rightarrow \$$
- In gen, a^{x} has a horizontal asy. along the x-axis
- Range $\left(a^{x}\right)=(0,+\infty)$
- $\operatorname{dom}\left(a^{*}\right)=\mathbb{R}$

Section 4.2: Expontial for
Def: $\quad e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \approx 2.71828 \ldots$.
\rightarrow irrational \#. (like $\pi, \sqrt{2}$).
Dele: The natural exponential ton $f(x)=e^{x} \rightarrow$ graph wi

$$
\begin{aligned}
& f(x)=e^{-x} \\
& f(x)=e^{x / 2} \\
& f(x)=3 e^{x / 2}
\end{aligned}
$$

$$
\begin{aligned}
x & \rightarrow c \cdot x \\
& \Rightarrow \text { hor. strath } \\
& \text { by } \frac{1}{c}
\end{aligned}
$$

Remark: Spse that $f(x)=$ dist a car travels at time x

$$
\frac{\widehat{\operatorname{Lr}}_{1}-\cdots-\ldots-\overparen{\sigma}_{0}}{f(x)}
$$

Spae that speed of the car at time x is $f(x)$.
Then $f(x)=e^{x}$.

Section 4.3: Logarithmic Functions.

Rok: By the hor. line test, $f(x)=a^{x}$ is $1-t_{0}-1$ $\Rightarrow a^{x}$ has an inverse functions

Deft: The logarithmic fan w/ base a $(a>0, a \neq 1)$ is

$$
\log _{a}:(0, \infty) \longrightarrow \mathbb{R}
$$

given by $\log _{a}(x)=y$ st $a^{y}=x$.

$$
\begin{array}{rll}
\text { Ex: } & \cdot \log _{2}(2)=y & \text { st } \\
& \cdot 2^{y}=2 \Rightarrow \log _{2}(8)=y & \text { st } 2^{y}=8 \Rightarrow y=3 \\
& \cdot \log _{42}(1)=y & \text { st } 42^{y}=1 \Rightarrow y=0 \\
& \cdot \log _{e}\left(e^{2}\right)=y & \text { st } e^{x}=e^{2} \Rightarrow y=2
\end{array}
$$

$E_{x}: \quad f(x)=2^{k}$

$$
f(x)=\left(\frac{1}{2}\right)^{x}
$$

$$
f(x)=\log _{2}(x)
$$

$$
f(x)=\log _{1 / 2}(x)^{m}
$$

Remark:

$$
\left.\begin{array}{l}
x \rightarrow 0, y \rightarrow-\infty \\
x \rightarrow \infty, y \rightarrow+\infty \\
x \rightarrow 0, y \rightarrow+\infty \\
x \rightarrow+\infty, y \rightarrow-\infty
\end{array}\right\} a>1
$$

Rmk: log ha ver. asy along y-axis.

Fact: 1) $\log _{a}(1)=0=y$ st $a^{y}=1 \Rightarrow y=0 ; a^{0}=1$
2) $\quad \log _{a}(a)=1=y$ st $a^{y}=a \Rightarrow y=1 ; \quad a^{\prime}=a$
3) $\log _{a}\left(a^{x}\right)=x=y$ st $a^{y}=a^{x} \Rightarrow y=x$
4) $a^{\log _{a}(x)}=x=\operatorname{sim}$.
\Leftrightarrow (3), (4) $a^{x}, \log _{a}(x)$ are inverses.

Deft: The natural logarithm is $\log _{e}(x)=\ln (x)$.

Ex: What is the domain of

$$
f(x)=\frac{\ln \left(4-x^{2}\right)}{x-3}
$$

1) Cont divide by zero $\Rightarrow x \neq 3$.
2) $\ln ($ neg. \#s $)$ is not deft.

$$
\begin{aligned}
& \Rightarrow 4-x^{2}>0 \\
& \Rightarrow 4>x^{2} \\
& \Rightarrow-2<x<2 \\
& \Rightarrow \operatorname{Dom}(7)=\{x \mid-2<x<2\}
\end{aligned}
$$

Section 4.4: Laws of Logarithms

Fact: 1) $\log _{a}(A \cdot B)=\log _{a}(A)+\log _{a}(B)$
\rightarrow raise a to the pour of LHES and RHS and comp

$$
\left.\begin{array}{l}
a^{\log _{a}(A \cdot B)}=A \cdot B \\
a^{\log _{a}(A)+\log _{a}(2)}=a^{\log _{a}(A)} \cdot a^{\log _{a}(B)}=A \cdot B
\end{array}\right\} \Rightarrow \text { agree. }
$$

2) $\log _{a}(A / B)=\log _{a}(A)-\log _{a}(B)$
3)

$$
\log _{a}\left(A^{c}\right)=C \cdot \log _{a}(A)
$$

Ex: i) $\ln \left(\frac{a^{2} b^{4}}{\sqrt[3]{c}}\right)^{4}=\ln \left(a^{2} b^{4}\right)-\ln (\sqrt[3]{c})$

$$
=\ln \left(a^{2}\right)+\ln \left(b^{4}\right)-\ln \left(c^{1 / 3}\right)
$$

$$
=2 \ln (a)+4 \ln (b)-\frac{1}{3} \ln (c)
$$

$$
\begin{aligned}
& E x: \quad 3 \ln (s)-5 \ln (s-2)+\ln \left(t^{2}-5\right) \\
&=\ln \left(s^{3}\right)-\ln \left((s-2)^{5}\right)+\ln \left(t^{2}-5\right) \\
&=\ln \left(\frac{s^{3}}{(s-2)^{5}}\right)+\ln \left(t^{2}-5\right) \\
&=\ln \left(\frac{s^{3}\left(t^{2}-5\right)}{(s-2)^{5}}\right)
\end{aligned}
$$

Fact: $\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}$
\rightarrow book for proof of this fact.

Section 4.5: Expontral and log equ.

Ex: i) $5^{x}=600$, solve for x

$$
\begin{aligned}
& \Rightarrow \log _{5}\left(5^{x}\right)=\log _{5}(600) \\
& \Rightarrow x=\log _{5}(600) \\
& x
\end{aligned}
$$

ii)

$$
\begin{aligned}
& 3^{x}=27 \sqrt{3} \\
& \Rightarrow \quad \log _{3}\left(3^{x}\right)=\log _{3}(27 \sqrt{3}) \\
& \Rightarrow x= \\
& =\log _{3}(27 \sqrt{3}) \\
& =\log _{3}(27)+\log _{3}(\sqrt{3}) \\
& =
\end{aligned}
$$

iii)

$$
\begin{aligned}
& 2^{x+2}=2^{2 x+3} \\
& \Rightarrow \log _{211}\left(2^{x+2}\right)=\log _{2}\left(2^{2 x+3}\right) \\
& \Rightarrow x+2=2 x+3 \\
& \Rightarrow 0=x+1 \\
& \Rightarrow x=-1 .
\end{aligned}
$$

Ex:
i)

$$
\begin{aligned}
& \quad \log _{2}(25-x)=3 \\
& \Rightarrow 2^{\log _{2}(25-x)}=2^{3} \\
& \Rightarrow 25-x=8 \\
& \Rightarrow x=17
\end{aligned}
$$

(We check that $\log _{-}(25-17)$ is def $\Rightarrow x=17$ is in fact a solution).
ii)

$$
\begin{aligned}
& \log (x-2)+\log (x-1)=\log (x-3) \\
& \Rightarrow e^{\log (x-2)+\log (x-1)}=e^{\log (x-3)} \\
& \Rightarrow(x-2)(x-1)=x-3 \\
& \Rightarrow x^{2}-3 x+2=x-3 \\
& \Rightarrow x^{2}-4 x+5=0 \\
& \text { discs }=16-4(5)=16-20=-4 \\
& \Rightarrow \text { no real solutions }
\end{aligned}
$$

