

Fact: i)
$$\log_{a}(1) = 0$$
 = γ st $a^{\gamma} = 1$ => $\gamma = 0$; $a^{\alpha} = 1$
2) $\log_{a}(a) = 1$ = γ st $a^{\gamma} = a$ => $\gamma = 1$; $a^{\alpha} = a$
3) $\log_{a}(a^{\alpha}) = x$ = γ st $a^{\gamma} = a^{\alpha} = -\gamma = x$
4) $a^{\log_{a}(M)} = x$ = im .
is (3) (4) a^{α} , $\log_{a}(A)$ are inverses.
Defn^{*} The natural logarithm is $\log_{c}(x) = \ln(x)$.
Ex^{*} What is the domain of
 $\gamma(x) = \frac{\ln(4-x^{2})}{x-3}$
i) Cast tinde by zero => $x \neq 3$.
2) $\ln(\log_{a}, \#_{5})$ is not defn.
 $=> 4-x^{2} > 0$
 $=> 4-x^{2} > 0$
Section 4.4: Laws of Logarithms
Fact: i) $\log_{a}(A \cdot B) = \log_{a}(A) + \log_{a}(B)$
 $is raise a to the pure of LHS and PHS and comp
 $a^{\log_{a}(A) + \log_{a}(B)} = a^{\log_{a}(A)} - a^{\log_{a}(B)} = A \cdot B$$

Ex°	i)	5 [×] =	600	, salue	for	×				
		=> 09	₅(5×) =	= logs (600))				
		=> X	= 1.00	- (600)						
	ji)	₹ [×] =	$27\sqrt{3}$	5 C - 7						
		=> ,	- (Z X)	=	(7	<u>∡ - (3)</u>				
			y ₃ (s)	- 10g		T I J				
		× 25		93(24)	ר בע					
			= lo	go (27)) + 、	Logs(<u>√</u> 3)			
			= l	ogs (73) +	693	(3'/2	·)		
			= 3	5 + 1/2						
			2	3.5						
	ii1)	2×+2	$= 2^{2x+}$	3						
		=>	20- (2×	⁺²) =	00 -	$(2^{2^{\star \star}})$	-3)			
		>	J'''		J	"				
					L					
		=)	χ = -	l _						
Ex:	;)	log2 (25-×)	= 3						
		ا د	ogz (25-X)	$= 2^{3}$						
		=> 25	-x =	8						
		=> X	= 17							
		(100	check I	hat los	(25	·-17)			y=17	15 24
							- 60			
		tact	· a 50[ution).						

$$\begin{array}{c} \text{if} \\ \log (x-2) + \log (x-1) = (cy(x-3)) \\ = 2 \cdot (cy(x-2) + (cy(x-1)) = x-3 \\ = 2 \cdot (x-2)(x-1) = x-3 \\ = 2 \cdot (x-2)(x-1) = x-3 \\ = 2 \cdot x^2 - 2x + 2 = x-3 \\ = 2 \cdot x^2 - 4x + 5 = 0 \\ \text{discr} = 16 - 4(5) = 16 - 20 = -4 \\ = 2 \cdot x^2 - 4x + 5 = 0 \\ = 2 \cdot x^2 - 4x + 5 \\ = 2 \cdot x^2 - 5 \\ = 2 \cdot x^2 - 4x + 5 \\ = 2 \cdot x^2 - 4x + 5 \\ = 2 \cdot x^2 - 5 \\ = 2$$