Lecture * 14

Warm-up: 1) Find a poly. w/ real coeffs that has zeros at $x=1$ and $x=-i$ and satisfies $P(0)=1$
\Rightarrow Real chef $\Rightarrow \mathrm{cpx}$ roots soccer as conj pairs.

$$
\begin{aligned}
& \text { ie } \quad a+i b=\text { root } \rightarrow a-i b=\text { root }=\overline{a+i b} \\
& P(x)=a \cdot(x-1)(x+i)(x-i) \\
& = \\
& =a(x-1)\left(x^{2}+x i-x i-i^{2}\right) \\
& = \\
& =a(x-1)\left(x^{2}+1\right) \\
& =a\left(x^{3}-x^{2}+x-1\right) \\
& 1=P(0)=a \cdot(-1) \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

2) Completely factor the polynomial

$$
P(x)=x^{3}-2 x^{2}+4 x-8
$$

\rightarrow Rat'l root test tell us that inly poos cat'l zoos de $\pm 1, \pm 2, \pm 4, \pm 8$.

$$
x=2
$$

$$
P(2)=8-2(4)+4(2)-8=0
$$

$\Rightarrow(x-2)$ is a factor
Apply Long div

$$
\begin{aligned}
& x-2 \begin{array}{l}
x^{2}+4 \\
\frac{-\left(x^{3}-2 x^{2}\right)}{4 x-8} \\
\frac{-(4 x-8)}{0} \\
0
\end{array} \\
& \Rightarrow P(x)=(x-2)\left(x^{2}+4\right) \\
& x^{2}+4=0 \Rightarrow x^{2}=-4 \Rightarrow x= \pm \sqrt{-4}= \pm 2 i \\
& \Rightarrow P(x)=(x-2)(x-2 i)(x+2 i) .
\end{aligned}
$$

Defn: A rat'l fon is

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where P, Q poly. $\omega /$ no common tactors
\leftrightarrow ie, $f(x)=\frac{\left(x^{2}-1\right)(x+1)}{\left(x^{2}-3\right)(x+1)} y \neq r a+{ }^{\prime} l$ fon

Ex: $\quad f(x)=1 / x$

Defn: $x=a$ is a ver, asy. of $f(x)$ if $y \rightarrow \pm \infty$ as $x \rightarrow a$ (either from lett risht)

$y=b$ is a hor. asy if $f(x) \rightarrow b$ as $x \rightarrow \pm \infty$

Rmk: Ver. asy for rat'l fon occuss when denom. is equal to zero.

$$
\frac{x^{7 t}}{x^{75} \times 2}
$$

Rok: Hor asym occur when

1) $\operatorname{deg}(P)=\operatorname{deg}(Q) \Rightarrow y=$ leading $\operatorname{cosf}(P) / \operatorname{lead}(Q)$
2) $\operatorname{deg}(P)>\operatorname{deg}(Q) \Rightarrow$ no hor. asy
3) $\operatorname{deg}(P)<\operatorname{deg}(Q) \Rightarrow y=0$ hor. a sym.

Ex: $\quad f(x)=\frac{(2 x-1)(x+4)}{(x-1)(x+2)}=\frac{2 x^{2}+8 x-x-4}{\left(x^{2}-x+2 x-2\right.}$
Dom, range, graph, easy.
$\therefore \operatorname{Dom}(f)=\{x \mid x \neq 1$ and $x \neq-2\}$
zeros of $f=$ meets x-axis at: $x=\frac{1}{2}, x=-4$
ver asymp $=x=1, x=-2$
hor. asymp $=y=2 / 1=2$
y-intercept $=(0, f(0))$
$\Leftrightarrow f(0)=(-1)(4) /(-1)(2)=2$

$$
\Rightarrow \quad(0,2)
$$

Range we look at graph (do not include hor. asym in the range)
is range $(f)=(-\infty, 2) \cup(2,+\infty)$.

Ex: $f(x)=\frac{x^{2}-4}{3 x^{2}-3 x}=\frac{(x-2)(x+2)}{3 x(x-1)}$
graph.
L Zeros = zeros of mum $= \pm 2=x$

$$
\begin{aligned}
& \text { any var }=z \text { zeros of demon }=x=0, x=1 \\
& \text { ass hor }=y=1 / 3
\end{aligned}
$$

Rok: If

$$
f(x)=\frac{P(x)(x-c)}{Q(x)(x-c)}
$$

then the graph of f is the graph of P / Q but w) a hollow dot at $(c, f(c))$

ㄱ $x=c \Rightarrow f(x)$;s undefmed
$x \neq c \Rightarrow(x-c) /(x-c)=1 \Rightarrow$ doesn't change graph.

Ex: $\quad f(x)=\frac{x^{2}(x-1)}{(x-1)}$

Ex: $f(x)=\frac{x^{2}-1}{x\left(x^{2}-1\right)}=\frac{(x-1)(x+1)}{x(x-1)(x+1)}$

Rok: $\quad f=P / Q$ where $\operatorname{deg}(P)=\operatorname{deg}(Q)+1$

$$
\leftrightarrow \text { ie. } \frac{x^{2}-2 x+1}{x+3}
$$

So we can apply long div. to write

$$
\frac{P}{Q}=a x+b+\frac{R}{Q}
$$

where $\operatorname{deg}(R)<\operatorname{deg}(Q)$
\Rightarrow (hor. asympt table) as $x \rightarrow \pm \infty \quad R / Q \rightarrow 0$ 4) $a x+b$ is a slant asym, ie graph (P / Q) aperaches graph of $a x+b$

$$
\text { Ex: } f(x)=\frac{x^{2}-2 x+1}{x+3}=\frac{(x-1)^{2}}{x+3}
$$

1) Apply long diu.

$$
\begin{aligned}
& x+3 \frac{x-5}{x^{2}-2 x+1} \\
& \frac{-\left(x^{2}+3 x\right)}{-5 x+1} \\
& \frac{-(-5 x-15)}{16} \\
& \Rightarrow f(x)=x-5+\frac{16}{x+3}
\end{aligned}
$$

2) Deft veer esymp, x-val where $Q(x)=0$

$$
\Rightarrow \text { ver. asy }=x=-3
$$

3) Find zeros of $f=x$-int. $=x=1$

$$
\text { Ex: } \quad f(x)=\frac{(x-3)(x+4)}{x-2}=\frac{x^{2}+x-12}{x-2}
$$

1) Long Div!

$$
\begin{aligned}
& x+3 \\
& x - 2 \longdiv { x ^ { 2 } + x - 1 2 } \\
& \frac{-\left(x^{2}-2 x\right)}{3 x-12} \\
& \frac{-(3 x-6)}{-6} \\
& \Rightarrow f(x)=x+3+\frac{-6}{x-2}
\end{aligned}
$$

\Rightarrow Slant asym at $y=x+3$
var.

$$
x=2
$$

$$
z e \text { eros at }=x=3, x=-4
$$

