Lecture \# 12

Warn-up: What is the minimal degree n such that the drawn graph could be the graph of a polynomial of degree n ?

$$
\begin{aligned}
& \leftrightarrow \text { \# of real zeros } \underline{2} \operatorname{deg} \\
& \# \text { of extrema } \leq \operatorname{deg}-1
\end{aligned}
$$

Section 3.3: Dividing Polynomials

$$
\text { Ex: } \quad \frac{37}{8}=\frac{4}{8}+\frac{5}{8} \text { divisor }{ }_{\text {quationt }}=37=4.8+5
$$

Fact: Given two poly $P(x), D(x) \neq 0$, there exist (unique) polys $R(x), Q(x)$ st
i) $\operatorname{deg}(R)=\operatorname{deg}(D)$
ii) $\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}$ $\left\{\begin{array}{l}\text { label these grus } \\ \text { like above. }\end{array}\right.$

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

$$
\frac{205}{3 \longdiv { 6 1 7 }} R^{2}
$$

Ex:

$$
\left.\begin{array}{l}
3 x \sqrt{6 x^{2}-x+2} \\
\frac{-\left(6 x^{2}\right)}{-x+2} \\
\frac{-(-x)}{2}
\end{array}\right\} \Rightarrow \begin{aligned}
& Q(x)=2 x-\frac{1}{3} \\
& R=2
\end{aligned}
$$

Ex:

$$
\begin{gathered}
\frac{x^{2}+2 x+1}{x-2} \begin{array}{l}
\frac{x^{3}-3 x+4}{2 x^{2}-3 x+4} \\
\frac{-\left(x^{3}-2 x^{2}\right)}{x+4} \\
\frac{-(x-2)}{2}
\end{array}
\end{gathered} \quad \text { Reduce deg. }
$$

$$
\begin{aligned}
& E x: \frac{x^{2}-2 x+1}{x} \\
& x-2 \\
& x \longdiv { x ^ { 2 } - 2 x + 1 } \\
& \frac{-\left(x^{2}\right)}{-2 x+1} \\
& -(-2 x) \\
& \begin{array}{r}
-600 \\
17
\end{array} \\
& \begin{array}{r}
-\quad 0 \\
\hline 17 \\
\frac{15}{2}
\end{array} \\
& 1 \\
& \Rightarrow Q(x)=x-2, \quad R(x)=1 \\
& x \cdot(x-2)+1=x^{2}-2 x+1=P(x)!
\end{aligned}
$$

$$
\Rightarrow Q=x^{2}+2 x+1, R=6 .
$$

Ex:

$$
\begin{aligned}
2 x^{2}-x+2 & \begin{array}{l}
4 x^{2}+2 x+ \\
8 x^{4}+6 x^{2}-3 x+1 \\
\end{array} \\
& \frac{-\left(8 x^{4}-4 x^{3}+8 x^{2}\right)}{4 x^{3}-2 x^{2}-3 x+1} \\
& \frac{\left(4 x^{3}-2 x^{2}+4 x\right)}{}
\end{aligned}
$$

$-7 x+1 \leadsto$ lower dag than

$$
\begin{aligned}
& 2 x^{2}-x+2 \\
& \Rightarrow \text { Done }
\end{aligned}
$$

$$
\Rightarrow Q=4 x^{2}+2 x, \quad R=-7 x+1
$$

Fact: If $P(x)$ is divided by $(x-c)$, then $R=P(c)$. $\rightarrow x^{2}-2 x+1 / x-2$, then $R=(2)^{2}-2(2)+1=1$

Proof: there exist Q, R st

$$
\begin{gathered}
P=Q \cdot(x-c)+R \\
\operatorname{deg}(R)<\operatorname{deg}(x-c)=1 \Rightarrow \operatorname{deg}(R)=0 \Rightarrow R=\text { constant }
\end{gathered}
$$ Plug in c to P.

$$
R=Q(c) \cdot(c-0 \text { " }-c)+R=P(c)
$$

Ex:

$$
\left.x-2 \begin{array}{l}
\frac{x}{\frac{x^{2}-2 x+1}{1}}
\end{array}\right\} \Rightarrow R=1=(2)^{2}-2(2)+1=1
$$

Fact: $P(c)=0$ if and only it $(x-c)$ is a factors of P.

Proof: $(<=): P=(x-c) \cdot f(x) \Rightarrow P(c)=(c-c) \cdot f(c)=0$

$$
(\Longrightarrow): \text { Write } P(x)=Q(x) \cdot(x-c)+R=Q(x) \cdot(x-c)
$$

but remainder than $\Rightarrow R=P(c)=0$

Ex: Factor $P(x)=x^{3}-5 x^{2}+7 x-3 \quad(P(3)=0)$
$\Rightarrow(x-3)$ divides P w/ remainder 0 .

$$
\left.\begin{array}{l}
x-3 \begin{array}{l}
\frac{x^{2}-2 x+1}{x^{3}-5 x^{2}+7 x-3} \\
\frac{-\left(x^{3}-3 x^{2}\right)}{-2 x^{2}+7 x-3} \\
\frac{-\left(-2 x^{2}+6 x\right)}{x-3} \\
\frac{-(x-3)}{0}
\end{array} \\
\Rightarrow P=(x-3)\left(x^{2}-2 x+1\right)
\end{array}=(x-3)(x-1)^{2}\right)
$$

Rok: Synth. division.

Section 3.4: Real Zeros if Poly.

Fact: $\quad f(x)=a_{n} x^{n}+a_{n-1} \cdot x^{n-1}+\ldots+a_{1} x^{1}+a_{0}$
Spae $a_{n} \neq 0 \neq a_{0}, a_{i}$ is an integer
\rightarrow Ex: $3 x^{77}+7 x^{6}-2 x^{2}-5$, good
$\frac{4}{5} x^{2}+7 \quad$, bad
$x^{2}-3 x \quad$ bad.
Then every rat'l zero of f is of the form p / q, in lowest terms. where p is a factor of a_{0}, q is a factors of a_{n}.

Ex: $f(x)=3 x^{77}+3 x+4$
\Rightarrow only poss. rat'l zeros are

$$
\pm 1, \pm 2, \pm 4, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3} \text {. }
$$

"Proof" $f(x)=a x^{2}+b x+c$
Spse $f(p / q)=0$

$$
\begin{aligned}
& \Rightarrow 0=a(p / q)^{2}+b(p / q)+c \\
& \Rightarrow 0=a p^{2}+b p q+c q^{2}
\end{aligned}
$$

$\Rightarrow q$ divides $b p q+c q^{2}=q(b p+c q)=-a p^{2}$
$\Rightarrow q$ divides $a=$ leading term

Ex: $f(x)=x^{3}-3 x+2$, factors if!
\Rightarrow poss. cot'l roots $\pm 1, \pm 2$
+1 works, -2 works
\Rightarrow Divide f by $(x-1),(x+2)$ to factors.

$$
\begin{aligned}
& \frac{x^{2}+x-2}{x^{3}-3 x+2} \\
& \frac{-\left(x^{3}-x^{2}\right)}{x^{2}-3 x+2} \\
& \frac{-\left(x^{2}-x\right)}{-2 x+2} \\
& \frac{-(-2 x+2)}{0} \\
& \Rightarrow f=(x-1)\left(x^{2}+x-2\right) \\
& x-1 \\
& x + 2 \longdiv { x ^ { 2 } + x - 2 } \\
& \frac{-\left(x^{2}+2 x\right)}{-x-2} \\
& \frac{-(-x-2)}{0} \\
& \Rightarrow f(x)=(x-1)(x+2)(x-1) .
\end{aligned}
$$

$$
\begin{gathered}
68-96+28 \\
96-16
\end{gathered} \quad \begin{aligned}
& 36 \\
& \frac{6}{96}
\end{aligned}
$$

Ex: $f(x)=x^{3}-6 x^{2}+7 x+4$, factor this!

$$
\Rightarrow \text { poss. }= \pm 1, \pm 2, \pm 4
$$

$\Rightarrow 4$ is a root!

$$
\begin{array}{r}
x-4 \begin{array}{l}
\frac{x^{2}-2 x-1}{x^{3}-6 x^{2}+7 x+4} \\
\frac{-\left(x^{3}-4 x^{2}\right)}{-2 x^{2}+7 x+4} \\
\frac{-\left(-2 x^{2}+8 x\right)}{-x+4} \\
\frac{-(-x+4)}{0}
\end{array} \\
\Rightarrow f=(x-4)\left(x^{2}-2 x-1\right) .
\end{array}
$$

$$
\rightarrow \text { poss } \pm 1
$$

Reduced to quad \rightarrow quad formula:

$$
x=\frac{2 \pm \sqrt{4-4(1)(-1)}}{2}=\frac{2 \pm \sqrt{8}}{2}=1 \pm \sqrt{2}
$$

$\Rightarrow x^{2}-2 x-1$ has zeros $2 \pm \sqrt{2}$
$\Rightarrow x^{2}-2 x-1$ has factors $(x-(1+\sqrt{2})),(x-(1-\sqrt{2}))$

$$
\Rightarrow f(x)=(x-4)(x-(1+\sqrt{2}))(x-(1-\sqrt{2}))
$$

Section 1.6: Complex Numbers.

Ex: $\quad 0=x^{2}+1 \Rightarrow-1=x^{2} \Rightarrow x= \pm \sqrt{-6}$

Deft: A complex number is a combination

$$
z=a+i b
$$

where a, b are real \#s and i is some symbol st $i^{2}=-1 \quad$ (think $i=\sqrt{-1}$).
c) Real part of $z, \operatorname{Re}(z)=a$

4 Imaginary $\operatorname{Im}(z)=b$
\Leftrightarrow if $\operatorname{Re}(z)=0$, then z is said to be pure imaginary.

Ex: $\quad i$ is a root of $x^{2}+1=0$

$$
(i)^{2}+1=-1+1=0 \quad \ddot{u}
$$

