Lecture \# II

Warm-up: Consider $f(x)=3 x^{2}+5 x-6$. Do the following:
i) Write f is standard form
ii) Write vertex of f
iii) " y-intercept
iv) " x-intercept
v) Does f achieve a min/max value?

What is the value of f and where does f achieve it?
vi) What is the dom/range of f ?
i)

$$
\left.\begin{array}{rl}
f(x) & =3 x^{2}+5 x-6 \\
& =3\left(x^{2}+\frac{5}{3} x\right)-6 \\
& =3\left(x^{2}+\frac{5}{3} x+\frac{25}{36}-\frac{25}{36}\right)-6 \\
& =3\left((x+5 / 6)^{2}-25 / 36\right)-6 \\
& =3(x+5 / 6)^{2}-\frac{25}{12}-\frac{72}{12} \\
& =3(x+5 / 6)^{2}-97 / 12 \\
(& (x+3)^{2}=x^{2}+\frac{5}{3} x+a \\
& \Rightarrow b^{2}=a, 2 b=\frac{5}{3} \\
& \Rightarrow b=\frac{5}{6}, a=25 / 36
\end{array}\right)
$$

ii) vertex $=(-5 / 6,-97 / 12)$
iii) y-int $=(0,-6) \quad((0, f(0))=y$-int $)$
iv)

$$
\begin{aligned}
& x \text {-int }=x \text { w/ } f(x)=0 \\
& c \quad 0=3(x+5 / 6)^{2}-97 / 12
\end{aligned}
$$

$$
x= \pm \sqrt{97 / 36}-5 / 6
$$

v) f achieves minimum.
f achicus it when $x=-5 / 6$

$$
f(-5 / 6)=-97 / 12
$$

$\left.v_{i}\right)$

$$
\begin{aligned}
& \operatorname{dom}(f)=\mathbb{R} \\
& \text { range }=[-97 / 12, \infty)
\end{aligned}
$$

Section 3.2: Poly fans and their graphs

Defn: A polynomial ton f is a for of the tarn

$$
\text { Ex: } \quad f(x)<5 x^{77}-8 x^{56}+7 x^{2}-8 x+42
$$

$$
\begin{aligned}
& f(x)=a_{n}-x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0} \\
& \Leftrightarrow f(x)=\text { poly expression. } \\
& \rightarrow a_{i}=\text { coefficients } \\
& \Leftrightarrow a_{0}=\text { constant conf } \\
& \rightarrow a_{n}=\text { leading conf } \quad\left(a_{n} \neq 0\right) \\
& \rightarrow a_{n} \cdot x^{n}=\text { leading term. } \\
& \leadsto \operatorname{dog}(f)=n \\
& 0 \cdot x^{76}+0 \cdot x^{33}+\cdots \\
& \leftrightarrow 5,-8,7,-8,42,0 \text { are all chefs } \\
& \rightarrow \text { leading conf }=5 \\
& \Leftrightarrow \text { constant conf }=42 \\
& \Leftrightarrow \text { leading term }=5 x^{77} \text {. } \\
& \Leftrightarrow \quad \operatorname{dog}(f)=77
\end{aligned}
$$

Ex: $\quad f(x)=x^{n}$, looks like graph of x^{2} (n even) and $x^{3}(x \operatorname{odb} x>1)$, lat near zero it's flatter and outside of 1 it ;s steeper
\rightarrow

cs $x^{\text {even }}$ is even for (sym wit y-axis)
$x^{\text {odd }}$ is odd fan (sym unt origin)
Ex: $\quad f(x)=-2 x^{5}+1 i$

Rok: - Graph of poly is continuous, ie., there are no jumps. You con draw it in one stroke (ie you dent have to pact ap pent.

- Graphs " " is smooth, ie, there are no cusps or shop points
c $|x|=f(x)$

RoK: End behavior of poly.
\leftrightarrow What happens to $f(x)$ as $x \rightarrow \pm \infty$
is Leading term will eventually dominate.

$$
\Leftrightarrow f(x)=x^{57}-2 x^{56}-2 x+1
$$

IE end behavior of leading term is end beh. of the polynomial.

4) sign leading coeff | deg (f) | $x \rightarrow-\infty$ | $x \rightarrow+\infty$ | |
| :---: | :---: | :---: | :---: |
| x^{2} | + | | even |
| $-x^{2}$ | - | | $+\infty$ |
| even | $-\infty$ | $+\infty$ | |
| x^{3} | + | | odd |
| $-x^{3}$ | - | $-\infty$ | $+\infty$ |
| odd | $+\infty$ | $-\infty$ | |

Ex: End behavior of $f(x)=-5 x^{77}+6 x^{76}+5 x^{75}$ as $x \rightarrow-\infty, \quad f(x)$ goes to $+\infty$

$$
\because \sim+\infty, \quad \cdots \quad \cdots \quad \cdots-\infty
$$

Defn: $\quad c=$ zero of f if $f(c)=0$, ie, graph of f meets x-axis at $(c, 0)$.

Fact: The following are equivalent
i) $c=$ zens of f
ii) $x=c$ solves $f(x)=0$
iii) $x-c$ is a factor of $f(f(x)=(x-c) \cdot g(x))$
iv) graph of f meets x-axis at $(c, 0)$.

$$
\text { Ex: } \quad f(x)=x^{2}-2 x=x(x-2)
$$

\Rightarrow crosses x-axis at 0,2

$f(x)=(x-1)(x-2)(x-3) \Longrightarrow$ malt out $3^{r^{2}}$ deg.
\rightarrow leading term is x^{3}

Fact: $\operatorname{deg}(f)=n \Rightarrow$ at most n zeros.

Ex:

Fact: If $f(a)$ has opposite sign of $f(b)$, then a zero occurs between a and b

4 between zeros the sign remains the same.

RoK: 1) Find the zeros
2) Test for sign of regions between zeros
3) Det. end behavior

Ex: $\quad f(x)=x^{3}-2 x^{2}-3 x$
Graph 7 .
0) Factor $f(x)$

$$
f(x)=x\left(x^{2}-2 x-3\right)=x(x+1)(x-3)
$$

1) zeros $=0,-1,3$
2) $x^{3}=$ leading coed $4 \Rightarrow$

Rok: Desmos $=$ graphing calculator.
Defn: It f has a factor $(x-c)^{m}$, then f has a zero of order m at c
\& this order influences shape of graph.
c $f(x)=g(x) \cdot(x-c)^{m}$, close to $x=c \quad g(x) \neq 0$ So roughly around $x=c, f(x) \approx(c o n) \cdot(x-c)^{m}$
\Rightarrow graph of f about $c=x$ roughly locks like the graph of $(x-c)^{m}$.

Ex: $\quad f(x)=x^{4}(x+1)^{3}$

$$
\begin{aligned}
\rightarrow & f(0)=(0)^{4}(0+1)^{3}=0 \cdot 1=0 \\
& f(-1)=(-1)^{4}(-1+1)^{3}=0 \\
& \Rightarrow \text { zeros }=0,-1
\end{aligned}
$$

$\Rightarrow 7$ has a zero of order 4 at $x=0$

Fact: $\operatorname{deg}(f)=n \Rightarrow$ graph has at most $n-1$ extrema
cs $n-1$ bends

$$
4 \quad \operatorname{deg}(f)=3
$$

