Section 1.1 : Real Numbers

Defns The natural number are countable \#'s

$$
\leftrightarrow 0,1,2,3,4,5, \ldots, 77, \ldots, 7777, \ldots
$$

Defas The integers are the nat. \#'s and their negatives

$$
\ldots,-42,-41,-40, . .,-1,0,1,2,3, \ldots, 77, \ldots
$$

Def: A rational \# is a ratio of two integers, $\frac{a}{b}$.

$$
\Leftrightarrow \frac{7}{11}, \frac{2}{3}, \frac{-4}{3}, 4=\frac{4}{1}
$$

Defuse A \# is irrational if it is nut rat'l.

$$
\rightarrow \pi, \sqrt{2}, \sqrt{7 / 11}, e \approx 2.72 \ldots, \pi^{2} / 4
$$

Defns The collection of all rum. is the real \#s, denote $\mathbb{R}$.

Rok: Every real \# admits a decimal expansion

$$
\begin{aligned}
\leftrightarrow 1 & =1.0, \quad \frac{1}{4}=0.25, \quad \frac{1}{8}=0.125 \\
\frac{1}{6} & =0.1 \overline{6666}, \quad \pi=3.141596 \ldots ?
\end{aligned}
$$

A \# is rat'l if its dec. expansion is finite as eventually repeats

Rules: (Commutativity of add(mult)

$$
\begin{array}{ll}
\rightarrow a+b=b+a ; & 2+7=9=7+2 \\
\rightarrow a \cdot b=b \cdot a ; & 2 \cdot 7=14=7 \cdot 2
\end{array}
$$

(Associativity of ")

$$
\begin{aligned}
& \rightarrow \quad(a+b)+c=a+(b+c) ; \\
& (2+3)+4=5+4=9 \\
& 2+(3+4)=2+7=9 \\
& \rightarrow(a \cdot b) \cdot c=a \cdot(b \cdot c)
\end{aligned}
$$

(Distributive Law)

$$
\begin{aligned}
\rightarrow a(b+c) & =a \cdot b+a \cdot c \\
2(3+4) & =2 \cdot 7=14 \\
2 \cdot 3+2 \cdot 4 & =6+8=14
\end{aligned}
$$

Ex: $\quad(a+b)(x+y)=(a+b) x+(a+b) y$

$$
\begin{aligned}
& =x(a+b)+y(a+b) \\
& =a x+b x+a y+b y .
\end{aligned}
$$

Rule: 1) $(-1) a=-a$
2) $-(-a)=a$
3) $(-a) \cdot b=-(a b)$
4) $(-a)(-b)=a b ;(-2)(-7)=14$
5) $-(a+b)=-a-b ;-(2+7)=-9$

$$
-2-7=-9
$$

Ex: $\quad-2(x-y)=(-2) x+(-2)(-y)=-2 x+2 y$

Def: $a \div b:=a \cdot \frac{1}{b}=\frac{a}{b}$

Rule: i) $\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} ; \frac{1}{2} \cdot \frac{3}{4}=\frac{3}{2 \cdot 4}=\frac{3}{8}$.
2) $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}$.
3) $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$
4)

$$
\begin{aligned}
\frac{a}{b}+\frac{c}{d} & =\frac{a}{b} \cdot \frac{d^{\prime}}{d}+\frac{c}{d} \cdot \frac{b^{\prime}}{b} \\
& =\frac{a d}{b d}+\frac{c b}{d b} \\
& =\frac{a d+c b}{b d}
\end{aligned}
$$

5) $\frac{a c}{b c}=\frac{a}{b} ; \frac{10}{20}=\frac{7 \cdot 5}{7 \cdot 10}=\frac{5}{10}=\frac{8 \cdot 1}{5 \cdot 2}=\frac{1}{2}$
6) 

$$
\begin{aligned}
& \frac{a}{b}=\frac{c}{d} \Rightarrow a d=c b \\
& \frac{a}{b} \cdot d=\frac{c}{d} \cdot b=c \\
& \frac{a d}{b} \cdot b=c \cdot b \Rightarrow a d=c b
\end{aligned}
$$

$$
\Rightarrow \frac{2}{10}=\frac{1}{5} \Rightarrow 2.5=10=10.1 .
$$

Defn: A fraction $p / q$ is in lowest terms if there is not a $c \neq 1$ st

$$
\frac{p}{q}=\frac{a c}{b c}
$$

Ex: $\frac{2}{10}$ is not in lowest terms

$$
\frac{2}{10}=\frac{2 \cdot 1}{2 \cdot 5} \quad(c=2)
$$

Defn: $a>b$ if and only if $a-b>0$

$$
\begin{aligned}
& \rightarrow 7>2, \quad 7-2=5>0 \\
& a \geqslant b \quad a-b \geqslant 0
\end{aligned}
$$

If $a>0$, then $a$ is positive
" $a<0$, " "negative.

RoK: $\mathbb{R}$


Defn: A set of numbers is a collection of real numbers $\rightarrow$ collection could be infinite
$\rightarrow E x j \mathbb{R}$ is a set

$$
E x:\{2\}
$$

Ex: Numbers less than or equal to 2
Typically, we denote a set w/ $\{$... $\}$.

$$
\rightarrow E x^{j}\{0,1,2,42,77,88\} .
$$

Defn: The union of two sets ir the set whose numbers are the numbers in said two sets

$$
\hookrightarrow E x:\{1,2,3,4,5\} \cup\{1,2,42,77,88\}
$$

$$
(c
$$

$$
\{1,2,3,4,5,42,77,88\} .
$$

$$
\begin{aligned}
& \text { Ex: } \quad\{1,2,3\} \cup\{1,2,4\}=\{1,2,3,4\} \\
& \text { Ex: }\{1,2\} \cup\{1\}=\{1,2\}
\end{aligned}
$$

The intersection of " " is the set " "
the numbers contained in both sets

$$
\rightarrow E \times:\{1,2,3,4,5\} \cap\{1,2,42,77,88\}
$$

( intersection

$$
\begin{gathered}
\{1,2\} \\
E \times:\{1,2\} \cap\{1\}=\{1\}
\end{gathered}
$$

Pictwe:

Notus' Set builder notation
L) $\{x \| 0<x \leq 777\}$ ) that satisfy

The set of real number such that $x$ is greater than zero but less than or equal to 777 .
77 is in
88
888 is not in this set

Ex:

$$
\begin{aligned}
& \{x \mid 0<x<7\} \cap\{x)-(<x \leq 6\} \\
& =\{x \mid 0<x \leq 6\}
\end{aligned}
$$

Picture: Graph of a set is the following:

$$
\begin{array}{llllll}
\{x \mid 0<x \leq 6\} & & \\
\hline-1 & 0 & 2 & 0 & 7 \\
\hline
\end{array}
$$

Ex: (cont.) $\{x \mid 0<x<7\}$


$$
\{x)-1<x \leq 6\}
$$

Defn: Interval notation

$$
\begin{align*}
& \Leftrightarrow(a, b)=\{x \mid a<x<b\}  \tag{4}\\
& \Leftrightarrow[a, b]=\{x \mid a \leq x \leq b\} \\
& \Leftrightarrow(a, b]=\{x \mid a<x \leq b\} \\
& \Leftrightarrow[a, b) \\
& \Leftrightarrow(-\infty, a]=\{x \mid x \leq a\} \\
& \Leftrightarrow[b,+\infty\} \\
& \Leftrightarrow(b,+\infty) \\
& \Leftrightarrow(-\infty,+\infty)=\mathbb{R}
\end{align*}
$$

Defn: (Absolute value)

$$
\begin{aligned}
& \quad|a|=\left\{\begin{aligned}
a, & a \geq 0 \\
-a, & a \leq 0
\end{aligned}\right. \\
& \Leftrightarrow|-2|=-(-2)=2
\end{aligned}
$$

$\leftrightarrow$ dist of a mum. from zero

Rule: i) $|a| \geqslant 0$
ii) $|a|=|-a| ;\left|21^{2 \prime}=|-2|\right.$
iii) $|a| \cdot|b|=|a b| ;|-2| \cdot|-5|=2 \cdot 5=10$
iv) $\frac{|a|}{|b|}=\left|\frac{a}{b}\right|$

$$
|(-2) \cdot(-5)|=|10|=10
$$

v) $|a+b| \leq|a|+|b|$

Defn: The dist. from a to $b|a-b|$ $\rightarrow$ dist. $\frac{2}{15}$ to $\frac{11}{20}$

$$
\begin{aligned}
\left|\frac{2}{15}-\frac{11}{20}\right| & =\left|\frac{20 \cdot 2}{15 \cdot 20}-\frac{15 \cdot 11}{15 \cdot 20}\right| \\
& =\left|\frac{40-166}{15 \cdot 20}\right| \\
& =\left|\frac{-126}{15 \cdot 20}\right| \\
& =\frac{126}{300} \\
& =\ldots
\end{aligned}
$$

Deft: $八^{n}$ nat. number
Defn:

$$
\begin{aligned}
a^{n}=\frac{a \cdot \ldots \cdot a ;}{n-\operatorname{tmes}} ; \quad 2^{3} & =2 \cdot 2 \cdot 2=8 \\
5^{2} & =5 \cdot 5=25 \\
(-2)^{5} & =-32
\end{aligned}
$$

$\rightarrow a$ is called the base
$n$ is called the exponent
Ex: $\quad\left(\frac{1}{4}\right)^{2}=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}$

Defni $\quad a^{-n}=\frac{1}{a^{n}} ; \quad a^{0} \equiv 1 \quad(a \neq 0)$.
Ex: $\quad\left(\frac{1}{4}\right)^{-2}=\frac{1}{(1 / 4)^{2}}=4^{2}=16$

$$
a^{-1}=\frac{1}{a}
$$

