| Lec  | ture <sup>®</sup> | <b>#</b> 5 |       |      |      |   |  |  |  |  |  |
|------|-------------------|------------|-------|------|------|---|--|--|--|--|--|
|      |                   |            |       |      |      |   |  |  |  |  |  |
| Titl | eõ                | Su         | rface | e Ar | ea   |   |  |  |  |  |  |
|      |                   |            |       |      |      |   |  |  |  |  |  |
| Sect | ion 🖁             | S          | tewa  | rt   | 15.5 | 5 |  |  |  |  |  |
|      |                   |            |       |      |      |   |  |  |  |  |  |
|      |                   |            |       |      |      |   |  |  |  |  |  |
|      |                   |            |       |      |      |   |  |  |  |  |  |
|      |                   |            |       |      |      |   |  |  |  |  |  |
|      |                   |            |       |      |      |   |  |  |  |  |  |
|      |                   |            |       |      |      |   |  |  |  |  |  |
|      |                   |            |       |      |      |   |  |  |  |  |  |













Review of partial derivatives  
Notn<sup>s</sup> 
$$f(x,y) = fon in two variables$$
  
Defn<sup>s</sup> The partial derivative of  $f$  wrt  $x$  is  
 $f_x = \partial f/\partial x = x$ -derivative of  $f$  w/ viewing  
 $y$  as constant.  
The partial derivative of  $f$  wrt  $y$  is  
 $f_y = \partial f/\partial y = y$ -derivative of  $f$  w/ viewing  
 $x$  as constant.

| Exa   | mple® |  | f                                                                                              | (×,) | () =  | 3     | x²y              | + S | in(×; | <b>,</b> ) |    |        |       |     |  |  |
|-------|-------|--|------------------------------------------------------------------------------------------------|------|-------|-------|------------------|-----|-------|------------|----|--------|-------|-----|--|--|
|       |       |  | 3                                                                                              | 7/2  | ) × = | - 6   | ×y               | * ) | y cos | (× y )     | )  |        |       |     |  |  |
|       |       |  | 9                                                                                              | 4/5  | ∋γ =  | = 3   | \$x <sup>2</sup> | +   | x cos | (xy        | )  |        |       |     |  |  |
|       |       |  |                                                                                                |      |       |       |                  |     |       |            |    |        |       |     |  |  |
| Picto | ure ° |  | The partial derivatives of $f$ at $(a, b)$ are the slopes of the tangents to $C_1$ and $C_2$ . |      |       |       |                  |     |       |            |    |        |       |     |  |  |
|       |       |  |                                                                                                |      |       |       |                  |     |       |            |    |        |       |     |  |  |
|       |       |  |                                                                                                |      |       |       |                  |     |       |            |    |        |       |     |  |  |
|       |       |  | x y                                                                                            |      |       |       |                  |     |       |            |    |        |       |     |  |  |
|       |       |  | (a, b, 0)                                                                                      |      |       |       |                  |     |       |            |    |        |       |     |  |  |
|       |       |  |                                                                                                |      |       |       |                  |     |       |            |    |        |       |     |  |  |
| Rem   | 0     |  | əf/                                                                                            | ax   | = ia  | finte | simal            | cha | nge o | f ł        | in | x - di | recti | ion |  |  |
|       |       |  | ət,                                                                                            | /ay  | IJ    | •     |                  | -   |       | - ¥        | -  | y -    | ••    |     |  |  |



$$= Why? = We use that the area of parallelogram spanned by vectors  $\vec{a}$  and  $\vec{b}$  is  $|\vec{a} \times \vec{b}|$ .  

$$= \vec{a} = \Delta \times \vec{i} + a \cdot \Delta \times \cdot \vec{k}, \quad \vec{b} = \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \times \vec{i} + a \cdot \Delta \times \cdot \vec{k}, \quad \vec{b} = \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \times \vec{i} + a \cdot \Delta \times \cdot \vec{k}, \quad \vec{b} = \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \times \vec{i} + a \cdot \Delta \times \cdot \vec{k}, \quad \vec{b} = \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \times \vec{i} + a \cdot \Delta \times \cdot \vec{k}, \quad \vec{b} = \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \times \vec{i} + a \cdot \Delta \times \cdot \vec{k}, \quad \vec{b} = \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \times \vec{i} + a \cdot \Delta \times \cdot \vec{k}, \quad \vec{b} = \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + b \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \Delta \gamma \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot \vec{k}$$

$$= \Delta \gamma \cdot \vec{j} + \delta \cdot$$$$

7) As size of rectangles go to zero Reimann sum becomes  

$$SA = \iint_{D} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}} dA$$















(3) Set up integral and solve  

$$SA = \int S_{D} + \frac{1}{1 + (2x)^{2} + (2y)^{2}} dA$$

$$= \int_{0}^{\pi} \int_{0}^{2 \sin(\theta)} (r \cdot \sqrt{1 + 4r^{2}} dr d\theta) + u = 1 + 4r^{2}$$

$$= \int_{0}^{\pi} \int_{0}^{1} \frac{1}{8} + \frac{1}{4} u du d\theta$$

$$= \int_{0}^{\pi} \left(\frac{1}{8} \cdot \frac{2}{7} \cdot (1 + 4r^{2})^{3/2}\right) \Big|_{0}^{2 \sin(\theta)} d\theta$$

$$= \int_{0}^{\pi} \frac{1}{12} \cdot \left((1 + 16 \sin^{2}\theta)^{3/2} - 1\right) d\theta$$

$$= \widehat{P}$$

Fact:
$$()$$
 $f = 2g$  $\Rightarrow$  $\int S_D f dA \Rightarrow \int S_D g dA$  $A$ (a) $\int S_D f dA = Area (D)$  $A$  $A$  $A$ (a) $If m \leq f \leq M$ , then $A$  $A$  $A$ (b) $If m \leq f \leq M$ , then $A$  $A$  $A$ (c) $A$  $A$  $A$  $A$  $A$ (c) $A$  $A$