$$
\text { Lecture * } 5
$$

Title: Surface Area

Section: Stewart 15.5

Lengths of curves

Notn: $\quad f:[a, b] \rightarrow \mathbb{R}=$ differentiable fen

- The graph of f is a curve in \mathbb{R}^{2}

Question: What is the length of this "curve/graph"
Answer: \quad Length $=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$

Rem: If $f(x)=m \cdot x+b$, then

$$
\text { Length from } \begin{aligned}
a \text { to } b & =\sqrt{\Delta x^{2}+\Delta f^{2}} \\
& =\Delta x \cdot \sqrt{1+\Delta f^{2} / \Delta x^{2}} \\
& =(b-a) \cdot \sqrt{1+m^{2}} \\
& =\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}}
\end{aligned}
$$

Divide $[a, b]$ up into n subintervals $\left[x_{i-1}, x_{i}\right]$ w/ widths Δx_{i}. Set $\Delta f_{i}=f\left(x_{i}\right)-f\left(x_{i-1}\right)$

Approximate the graph of f by secant line segments

As $n \rightarrow \infty$, red segments hug graph of f more and more \Rightarrow length of red segments approx. length of graph

$$
\begin{aligned}
& \text { Reimann sum: } \sum_{i=1}^{n} \sqrt{\Delta x_{i}^{2}+\Delta f_{i}^{2}}=\text { length of line } \\
& =\sum_{i=1}^{n} \sqrt{1+\left(\Delta f_{i} / \Delta x_{i}\right)^{2}} \quad \Delta x_{i} \quad\left\{\begin{array}{l}
\text { Some } \\
\text { sample }
\end{array}\right. \\
& =\sum_{i=1}^{n} \sqrt{1+f^{\prime}\left(x_{i}^{*}\right)^{2}} \cdot \Delta x_{i} \quad x_{i}^{*} \text { given } \\
& =\text { Reimann sum for } \sqrt{1+\left(f^{\prime}\right)^{2}} \quad \begin{array}{l}
\text { by mean } \\
\text { value the }
\end{array} \\
& \Rightarrow \text { Length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

Example: What is the length of the graph of $f(x)=\sqrt{1-x^{2}}$ from -1 to 1 ?

Soln: (1) Compute $f^{\prime}: f^{\prime}(x)=-x / \sqrt{1-x^{2}}$
(2) Use formula:

$$
\begin{aligned}
\text { length } & =\int_{-1}^{1} \sqrt{1+x^{2} /\left(1-x^{2}\right)} d x \\
& =\int_{-1}^{1} \sqrt{\frac{1-x^{2}}{1-x^{2}}+\frac{x^{2}}{1-x^{2}}} d x \\
& =\int_{-1}^{1} \sqrt{1 /\left(1-x^{2}\right)} d x \\
& =\left.\arcsin (x)\right|_{-1} ^{1} \\
& =\pi / 2-(-\pi / 2) \\
& =\pi
\end{aligned}
$$

Question: Given graph of $f(x, y)$, how do we compute its surface area?

Review of partial derivatives

Notn: $\quad f(x, y)=f a n$ in two variables

Defn: The partial derivative of f wort x is

$$
f_{x}=\partial f / \partial x=x \text {-derivative of } f \text { w/ viewing }
$$

y as constant.
The partial derivative of f wot y is

$$
\begin{aligned}
f_{y}=\partial f / \partial y= & y \text {-derivative of } f \text { w/ viewing } \\
& x \text { as constant. }
\end{aligned}
$$

$$
\text { Example: } \quad \begin{aligned}
f(x, y) & =3 x^{2} y+\sin (x y) \\
\partial f / 2 x & =6 x y+y \cos (x y) \\
\partial f / \partial y & =3 x^{2}+x \cos (x y)
\end{aligned}
$$

The partial derivatives of f at (a, b) are the slopes of the tangents to C_{1} and C_{2}.
Picture:

Rem: $\quad \partial f / \partial x=$ infintesimal change of f in x-direction $\partial f / \partial y=$

Surface Area

Theorem: The surface area of the graph of f over a region D is

$$
S A=\iint_{D} \sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

Idea: 1) given a plane $a x+b y+c=f(x, y)$, the $S A$ over a rectangle $\left[x_{0}, x_{1}\right] \times\left[y_{0}, y_{1}\right]$ is

$$
\sqrt{1+a^{2}+b^{2}} \cdot \Delta x \cdot \Delta y
$$

where $\Delta x=x_{1}-x_{0}, \Delta y=y_{1}-y_{0}$
\rightarrow Why?: We use that the area of parallelogram spanned by vectors \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.

$$
c \vec{a}=\Delta x \vec{i}+a \cdot \Delta x \cdot \vec{k}, \quad \vec{b}=\Delta y \dot{j}+b \cdot \Delta y \cdot \vec{k}
$$

2) Divide region D up into rectangles $R_{i j}$ of size $\Delta x \cdot \Delta y$

$$
\begin{aligned}
S A & \approx \sum_{i=1}^{n} \sum_{j=1}^{n} S A \text { of a tangent plane of } f \text { over } R_{i j} \\
* C & =\sum_{i=1}^{n} \sum_{j=1}^{n} S A\left(T_{i j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{1+f_{x}\left(x_{i}^{*}, y_{i}^{*}\right)^{2}+f_{y}\left(x_{i}^{*}, y_{i}^{*}\right)^{2}} \cdot \Delta x \cdot \Delta y \\
& =\text { Reimann sum for } \sqrt{1+f_{x}^{2}+f_{y}^{2}} \\
{ }^{*} T_{i j} & =f_{x}\left(x_{i}^{*}, y_{j}^{\prime}\right)\left(x-x_{i}^{*}\right)+f_{y}\left(x_{i}^{*}, y_{2}^{\prime}\right)\left(y-y_{2}^{*}\right)+f\left(x_{i}^{*}, y_{2}^{*}\right)
\end{aligned}
$$

for some samples $\left(X_{i}^{*}, y_{i}^{*}\right)$ in $R_{i j}$
7) As size of rectangles go to zero Reimann sum becomes

$$
S A=\iint_{D} \sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} d A
$$

Picture:

Example: Compute surface area of plane $3 x+2 y+z=6$ that lies above the triangle w/ vertices $(0,0),(1,0),(1,1)$

Soln: (1) View as integral problem:

$$
\text { SA of graph of } f(x, y)=-3 x-2 y+6
$$

() Draw picture of D

(1) Determine bounds: $0 \leqslant y \leqslant x, 0 \leq 1 \leqslant x$
(2) Set up integral and solve

$$
\begin{aligned}
S A & =\int_{0}^{1} \int_{0}^{x} \sqrt{1+9+4} d y d x \\
& =\int_{0}^{1} \int_{0}^{x} \sqrt{14} d y d x \\
& =\left.\sqrt{14} \cdot \int_{0}^{1} y\right|_{0} ^{x} d x \\
& =\sqrt{14} \cdot \int_{0}^{1} x d y \\
& =\left.\sqrt{14} \cdot\left(x^{2} / 2\right)\right|_{0} ^{1} \\
& =\sqrt{14} / 2
\end{aligned}
$$

Exercise: Compute the surface area of the graph of $f(x, y)=x y$ over the part of the dist of radius 1 in the first quadrant.

Soln:
(-) Dean picture

(1) Describle domain in polar cord.

$$
D=\left\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta \leq \frac{\pi}{2}\right\}
$$

(2) Set up integral and solve

$$
\begin{aligned}
S A & =\iint_{0} \sqrt{1+x^{2}+y^{2}} d A \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} r \sqrt{1+r^{2}} d r d \theta \quad J u=1+r^{2} \\
& =\int_{0}^{\pi / 2} \int_{1}^{2} \frac{1}{2} \sqrt{u} d u d \theta \quad d u=2 r d r \\
& =\left.\int_{0}^{\pi / 2}\left(\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}\right)\right|_{1} ^{2} d \theta \\
& =\frac{\pi}{6} \cdot\left(2^{3 / 2}-1^{3 / 2}\right) \\
& =\frac{\pi}{6} \cdot(\sqrt{8}-1)
\end{aligned}
$$

Example: What is the surface area of $z=x^{2}+y^{2}$ that lies under the plane $z=2 y$ as an integral.

Sol:
(D) Draw picture
\rightarrow View from $x=0$ plane

(1) Find intersection:

$$
x^{2}+y^{2}=2 y \quad \Rightarrow \quad x^{2}+(y-1)^{2}=1
$$

So they intersect over the cylinder
(2) Reduce to integral problem
$\leftrightarrow S A$ under $z=2 y$ is $S A$ of $f=x^{2}+y^{2}$ over $D=$ inside of $\left\{(x, y) \mid x^{2}+y^{2}=2 y\right\}$.

$$
=\left\{x^{2}+y^{2} \leq 2 y\right\}
$$

(3) Draw D

(4) Find polar bounds:

$$
D=\{r \leq 2 \sin (\theta), \quad 0 \leq \theta \leq \pi\}
$$

(5) Set up integral and solve

$$
\begin{aligned}
S A & =\iint_{D} \sqrt{1+(2 x)^{2}+(2 y)^{2}} d A \\
& =\int_{0}^{\pi} \int_{0}^{2 \sin (\theta)} r \cdot \sqrt{1+4 r^{2}} d r d \theta \int u=1+4 r^{2} \\
& =\int_{0}^{\pi} \int_{0}^{?} \frac{1}{8} \sqrt{u} d u d \theta \\
& =\left.\int_{0}^{\pi}\left(\frac{1}{8} \cdot \frac{2}{3} \cdot\left(1+4 r^{2}\right)^{3 / 2}\right)\right|_{0} ^{2 \sin (\theta)} d \theta=8 r d r \\
& =\int_{0}^{\pi} \frac{1}{12} \cdot\left(\left(1+16 \sin ^{2} \theta\right)^{3 / 2}-1\right) d \theta \\
& =?
\end{aligned}
$$

Fact: (1) $f \geqslant g \Rightarrow \iint_{D} f d A \geqslant \iint_{D} g d A$
(2) $\iint_{D} 1 d A=$ Area (D)
(2) If $m \leq f \leq M$, then

$$
m \cdot \text { Area }(D) \leq \iint_{0} f d A \leq M \cdot \text { Area }(D)
$$

