$$
\text { Lecture * } 4
$$

Title: Applications of double integrals - Probability

Section: Stewart 8.5, 15.4

Warmup: Find the volume above $z=\sqrt{x^{2}+y^{2}}$ and below $x^{2}+y^{2}+z^{2}=1$ as an integral in polar coordinates

Solution:
(1) Draw picture

(2) Phrase as integral

Volume $=$ volume below $x^{2}+y^{2}+z^{2}=1$ over D "minus" volume below $Z=\sqrt{x^{2}+y^{2}}$ over D
where $D=\left\{x^{2}+y^{2} \leq 1 / 2\right\}$

$$
\Rightarrow \text { Volume }=\iint_{0} \sqrt{1-x^{2}-y^{2}} d A-\iint_{0} \sqrt{x^{2}+y^{2}} d A
$$

(3) Convert to polar

$$
\begin{aligned}
& \rightarrow D=\{r \leq 1 / 4\} \\
& \rightarrow \text { Volume }=\int_{0}^{2 \pi} \int_{0}^{1 / 4} r \sqrt{1-r^{2}}-r^{2} d r d \theta
\end{aligned}
$$

Remark: - What is the probability that a random women is between 5^{\prime} and $5^{\prime} 2^{\prime \prime}$?

- How would we model and compute such a thing?
- Note all possible heights range over an interval of real numbers.

Definition: A continuous random variable X is a collection of possible outcomes that range over an interval of real numbers

Definition: The probability that the random variable is between a and b is $P(a \leq X \leq b)$

Example: $\quad X=$ heights of women in inches
$P(60 \leq X \leq 70)=$ probability a random women has height between 60 and 70 makes.

Definition: The probability density function f of a continuous random variable X is the function that satisfies:

$$
\int_{a}^{b} f(x) d x=p(a \leq x \leq b)
$$

Probability density function for the height of an adult female
Example:

- Every probability density function satisfies

1) $f(x) \geqslant 0$

4 no such thing as "neg." likelihood
2) $\int_{-\infty}^{\infty} f d x=1$
\rightarrow probability that any possibility occurs is 1

$$
\begin{gathered}
\text { Example: } \quad f= \begin{cases}0, & |x|>1 \\
|x| & ,|x| \leq 1\end{cases} \\
\cdot
\end{gathered}
$$

Question: What is average height of people or zoom meeting

Answer: Sum of all heights / \# of people

Question: How could we approximate this w/ out knowing exact heights, but just ranges where peoplefall.

$$
\text { Som: } \quad \begin{aligned}
\text { Average } \approx & (\% \text { people between } 4-5 \mathrm{ft}) \cdot 4.5 \mathrm{ft} \\
& +(\% \text { people between } 5-6 \mathrm{ft}) \cdot 5.5 \mathrm{ft} \\
& +(\% \text { people between } 6-7 \mathrm{ft}) \cdot 6.5 \mathrm{ft}
\end{aligned}
$$

Remark: - What is the average value of X that occurs?

- We approximate it like before
- $\quad \rightarrow$ Divide $(-\infty, \infty)$ into n subintervals $\left[x_{i-1}, x_{i}\right]$ of widths Δx_{i}
c) Average $\approx \sum_{i=1}^{n} x_{i}^{*} \cdot f\left(x_{i}^{*}\right) \cdot \Delta x_{i}$
for x_{i}^{*} sampled from $\left[x_{i-1}, x_{i}\right]$

$$
\begin{aligned}
\Leftrightarrow & \approx p(a \leq x \leq b) \\
& "=" \% \text { of occurrances in }\left[x_{i-1}, x_{i}\right] \\
& "=" \% \text { of women between } 60^{\prime \prime}-70^{\prime \prime} \text { tall }
\end{aligned}
$$

\rightarrow value of random variable over $\left[x_{i-1}, x_{i}\right]$
$=$ "average" height among women in range is between $60^{\circ}-70^{\circ}$.

As \# intervals goes to ∞, this becomes Reimann sum for $f(x) \cdot x$.

Definition: The mean of a pdf f is

$$
\mu=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

Warning: μ is not the average value of f as we saw in 15.1

Example: - $X=$ time you wait for professor to email you back

$$
f(t)= \begin{cases}0, & t \leq 0 \\ e^{-c t}, & t \geq 0\end{cases}
$$

When is f a $p d f ?$
What is $P(0 \leq x \leq 5)$?

$$
\mu ?
$$

Solution: - Must have $1=\int_{-\infty}^{\infty} f d t$

$$
\begin{aligned}
\Rightarrow 1 & =\int_{0}^{\infty} e^{-t c} d t \\
& =\left.\left(-1 / c \cdot e^{-t c}\right)\right|_{0} ^{\infty} \\
& =1 / c \\
\Rightarrow 1 & =c
\end{aligned}
$$

- $P(0 \leq X \leq 5)=\int_{0}^{5} e^{-t} d t=-\left.e^{-t}\right|_{0} ^{5}=1-e^{-5}$
- $\mu=\int_{0}^{\infty} t \cdot e^{-t}=1$ (integration by parts)

Definition: Let X, Y be two continuous random variables.

$$
\leftrightarrow X=\text { height }, Y=\text { age }
$$

\rightarrow Think of as points (X, Y) in plane \mathbb{R}^{2} The joint density function of X and Y is the function f that satisfies

$$
P(a \leq x \leq b, c \leq y \leq d)=\int_{c}^{d} \int_{a}^{b} f d x d y
$$

Picture:
Figure 7
The probability that X lies between a and b and Y lies between c and d is the volume that lies above the rectangle $D=[a, b] \times[c, d]$ and below the graph of the joint density function.

As before
i) $f \geqslant 0$
ii) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f d x d y=1$

Example: Spse

$$
f(x, y)=\left\{\begin{array}{cl}
C(x+2 y) & , 0 \leq x, y \leq 10 \\
0 & \text { else }
\end{array}\right.
$$

For what value C is f a pdf? What is $P(x \leq 7, Y \geqslant 2) ?$

Solution: - Must have

$$
\begin{aligned}
1 & =\int_{0}^{10} \int_{0}^{10} C(x+2 y) d x d y \\
& =\left.C \int_{0}^{10}\left(x^{2} / 2+2 x y\right)\right|_{0} ^{10} d y \\
& =C \int_{0}^{10}(50+20 y) d y \\
& =\left.C\left(50 y+10 y^{2}\right)\right|_{0} ^{10} \\
& =C \cdot 1500 \\
& \Rightarrow \frac{1}{1500}=C
\end{aligned}
$$

- $P(x \leq 7, y \geq 2)$

$$
\begin{aligned}
& =\int_{2}^{10} \int_{0}^{7} C(x+2 y) d x d y \\
& =\left.C \int_{2}^{10}\left(x^{2} / 2+2 y x\right)\right|_{0} ^{7} d y \\
& =C \int_{2}^{10} 49 / 2+14 y d y \\
& =\left.C \cdot\left(\frac{49}{2} y+7 y^{2}\right)\right|_{2} ^{10}=\text { etc... }
\end{aligned}
$$

Definition: X and Y are independent random variables if the joint density function is the product of their individual pdf's.

$$
\begin{aligned}
& \text { individual pdf's. }=\text { " } \\
& \Leftrightarrow \quad f(x, y)=f_{1}(x) \cdot f_{2}(y)
\end{aligned}
$$

Remark:

$$
\begin{aligned}
P(a & \leq X \leq b, c \leq Y \leq d) \\
& =\int_{a}^{b} \int_{c}^{d} f_{1}(x) \cdot f_{2}(y) d y d x \\
& =\int_{a}^{b} f_{1}(x) \int_{c}^{d} f_{2}(y) d y d x \\
& =P(c \leq Y \leq d) \cdot \int_{a}^{b} f_{1}(x) d x \\
& =P(c \leq Y \leq d) \cdot P(a \leq x \leq b)
\end{aligned}
$$

some
"constant"

Definition: The X-mean is (expected value of X)

$$
\mu_{x}=\iint x \cdot f(x, y) d A
$$

The Y-mean is (. . . . Y)

$$
\mu_{Y}=\iint y \cdot f(x, y) d A
$$

Exercise: Spse X and Y have joint density function

$$
f(x, y)=\left\{\begin{array}{cl}
\int_{0}^{1} \int_{0}^{1} q \cdot x^{2} \cdot y^{2} & , 0 \leq x, y \leq 1 \\
0, & \text { else }
\end{array}\right.
$$

Compute the expected values of X and Y.

$$
\text { Solution: } \begin{aligned}
\mu_{x} & =\int_{0}^{1} \int_{0}^{1} x \cdot 9 x^{2} y^{2} d x d y \\
& =\left.\int_{0}^{1}\left(9 x^{3} y^{3} / 3\right)\right|_{0} ^{1} d x \\
& =\int_{0}^{1} 3 x^{3} d x \\
& =\left.\left(3 / 4 \cdot x^{4}\right)\right|_{0} ^{1} \\
& =3 / 4 \\
\cdot \mu_{Y} & =3 / 4
\end{aligned}
$$

