Lecture \#22

Title: Complex line integrals

Theorem: (Cauch y-Riemann Equations)
(1) If $f^{\prime}\left(z_{0}\right)$ exists, then
$(\infty) \quad \frac{\partial u}{\partial x}\left(z_{0}\right)=\frac{\partial v}{\partial y}\left(z_{0}\right)$ and $\frac{\partial u}{\partial y}\left(z_{0}\right)=-\frac{\partial v}{\partial x}\left(z_{0}\right)$ and $f^{\prime}\left(z_{0}\right)=u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)$
(2) If $u_{x}, v_{x}, u_{y}, v_{y}$ are continuous and satisfy (\not) near z_{0}, then $f^{\prime}\left(z_{0}\right)$ exists and

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)
$$

Warmup: Consider $f(z)=e^{y} \cdot e^{-i x}$. Determine where f is holomorphic and give its value at these points.

Soln:

$$
\begin{aligned}
& f(z)=e^{y} \cos (-x)+i e^{y} \sin (-x) \\
& u_{x}=e^{y} \sin (-x) \\
& v_{x}=-e^{y} \cos (-x) \\
& u_{y}=e^{y} \cos (-x) \\
& v_{y}=e^{y} \sin (-x)
\end{aligned}
$$

Need $u_{x}=v_{y}, u_{y}=-v_{x}$

$$
\begin{gathered}
\Rightarrow e^{y} \sin (-x)=e^{y} \sin (-x) \\
e^{y} \cos (-x)=-\left(-e^{y} \cos (-x)\right) \\
\Rightarrow f^{\prime}(z)=e^{y} \sin (-x)+i\left(-e^{y} \cos (-x)\right)
\end{gathered}
$$

Defn: An arc in \mathbb{C} is a function

$$
w(t)=x(t)+i y(t) \quad \text { w/ } \quad a \leq t \leq b
$$

The derivative of w is

$$
\frac{d}{d t}(w(t))=w^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)
$$

\leftrightarrow Just differentiate normally writ t.

$$
\text { Ex: } \quad \begin{aligned}
\omega(t) & =R e^{i t}=R \cos (t)+i R \sin (t) \\
\omega^{\prime}(t) & =-R \sin (t)+i R \cos (t) \\
& =i R e^{i t}
\end{aligned}
$$

$$
\text { - } \quad \begin{aligned}
& w(t) \\
& w^{\prime}(t)
\end{aligned}=2 t+i t
$$

$$
\text { - } \begin{aligned}
\omega(t) & =\exp \left(t^{2}-i \cos (i t)\right) \\
\omega^{\prime}(t) & =\exp \left(t^{2}-i \cos (i t)\right) \cdot(2 t-\sin (i t))
\end{aligned}
$$

Defn: The integral along a path $\omega(t)$ is

$$
\int_{a}^{b} w(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

\rightarrow Integrate real and imaginary parts separately

Example: $\quad \int_{0}^{\pi / 4} e^{i t} d t=\int_{0}^{\pi / 4} \cos (t) d t+i \int_{0}^{\pi / 4} \sin (t) d t$

$$
\begin{aligned}
& =\left.(\sin (t)-i \cos (t))\right|_{0} ^{\pi / 4} \\
& =\sqrt{2} / 2+i\left(1-\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

Fact: $\quad \int_{a}^{b} w^{\prime}(t) d t=\omega(b)-w(a)$

$$
E x: \quad \int_{0}^{\pi / 4} e^{i t} d t=\left.\left(\frac{e^{i t}}{i}\right)\right|_{0} ^{\pi / 4}=, ~\left(\frac{e^{i \pi / 4}}{i}-\frac{1}{i}\right)
$$

Ex: Compute $\int_{0}^{1}(1+i t)^{2} d t$.

Soln:

$$
\begin{aligned}
& \int_{0}^{1}(1+i t)^{2} d t \\
& =\left.\left(\frac{-i}{3}(1+i t)^{3}\right)\right|_{0} ^{1} \\
& =\frac{-i}{3}\left((1+i)^{3}-1\right) \\
& =\frac{-i}{3}(-3+2 i) \\
& =\frac{2}{3}+i
\end{aligned}
$$

$$
(1+i)(1+i)(i+1)
$$

Defn: A contour C is a piecewise smooth are $\omega(t)$ in \mathbb{C}

Def: Spse $\omega(t)$ traces out the contour C.
Let $f(z)$ be a fan.
The contour integral of f along C is

$$
\begin{aligned}
\int_{c} f(z) d z & =\int_{a}^{b} f(w(t)) \cdot w^{\prime}(t) d t \\
& =\int_{a}^{b} \text { Real } d t+i \int_{a}^{b} \text { imag. } d t
\end{aligned}
$$

Waning: "" is multiplication of complex numbers, not the dot product!

Rem: $\quad \int_{c} f d z=-\int_{-c} f d z$

Ex: $\quad \int_{c} \frac{d z}{z}$ where C is top half of unit circle.

Soln: - $\omega(t)=e^{i t} \quad \omega l \quad 0 \leq t \leq \pi$

- $\int_{0}^{\pi} i e^{i t} / e^{i t} d t=\int_{0}^{\pi} i d t=\pi_{i}$

$$
\text { Ex: } \quad f(z)=y-x-i 3 x^{2}
$$

C is straight -line from 0 to $1+i$.

$$
\text { Soln: } \quad \begin{aligned}
w(t)= & t+i t \text { for } 0 \leq t \leq 1 \\
\cdot & \omega^{\prime}(t)= \\
\cdot \quad \int_{c} f d z & =\int_{0}^{1}\left(t-t-i 3 t^{2}\right)(1+i) d t \\
& =\int_{0}^{1} 3 t^{2}-i 3 t^{2} d t \\
& =\left.\left((1-i) t^{3}\right)\right|_{0} ^{1} \\
& =1-i
\end{aligned}
$$

Theorem: If f is holomorphic over a domain bounded
Cauchy by a simple* closed contour C, then

$$
\int_{c} f d z=0
$$

* Doesn't repeat path.

Proof:

$$
\begin{aligned}
& \int_{a}^{b} f(w(t)) \cdot w^{\prime}(t) d t \\
& =\int_{a}^{b}(u(w(t))+i v(w(t))) \cdot\left(x^{\prime}(t)+i y^{\prime}(t)\right) d t \\
& =\int_{a}^{b}\left(u \cdot x^{\prime}-v \cdot y^{\prime}\right) d t+i \int_{a}^{b}\left(v \cdot x^{\prime}+u \cdot y^{\prime}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
C^{00 t} & \int_{a}^{r o s} \cdot \mathbb{R}^{2} \cdot(u, v) \cdot w^{\prime} d t+i \int_{a}^{b}(v, u) \cdot w^{\prime}(t) d t \\
\text { Green! } & =\iint v_{x}-u_{v} d A+i \int_{b}^{b} u_{x}-v_{y} d A
\end{aligned}
$$

Ex: If C is a closed curve that does not enclose $z=1$, then

- $\int_{c} \cos ^{2}\left(z^{2}\right) d z=0$
- $\int_{c} \sin \left(e^{z}\right) d z=0$
- $\int_{c} z^{2} /(z-1) d z=0$

Ex: Spse C is any simple closed curve that goes once around the origin counter clockwise Show that $\int_{C} \frac{d z}{z}=2 \pi i$.

Soln: -

- Cauchy-Goursat $\Rightarrow \int_{c_{1}} \frac{d z}{z}=0=\int_{c_{2}} \frac{d z}{z}=0$

$$
\begin{aligned}
& \Rightarrow \int_{e_{1}} \frac{d z}{z}+\int_{C_{z}} \frac{d z}{z}=\int_{c} \frac{d z}{z}-\int_{i \theta} \frac{d z}{z}=0 \\
& \Rightarrow 2 \pi i=\int_{e^{i 0}} \frac{d z}{z}=\int_{C} \frac{d z}{z}
\end{aligned}
$$

Ex: Compute $\int_{c} z^{2} d z$ where C is any arc from 0 to $1+i$.

Sola:

$$
\begin{aligned}
C G \Rightarrow O & =\int_{-t(1+i)} z^{2} d z+\int_{c} z^{2} d z \\
\Rightarrow \int_{c} z^{2} d z & =\int_{0}^{1}(t(1+i))^{2}(1+i) d t \\
& =\left.\frac{1}{3}((1+i) t)^{3}\right|_{0} ^{1} \\
& =\frac{1}{3}(1+i)^{3}
\end{aligned}
$$

Theorem: If f is holomorphic over a domain bounded by a simple closed contour C, then

$$
\frac{n!}{2 \pi i} \int_{c} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=f^{(n)}\left(z_{0}\right)
$$

Ex: \quad Spse $\quad C=\{|z|=1\}$.

$$
S_{c} \exp (2 z) / z^{4} d z=\frac{2 \pi i}{6} \cdot 8=8 \pi i / 3
$$

$$
\begin{aligned}
& \text { Ex: } \quad \begin{array}{l}
\text { Compute } S_{c} \cos (z) / z^{3}+9 z d z \text { where } \\
\\
C=\{|z|=1\} . \\
\\
\begin{aligned}
\text { Soln: } \quad & \int_{c}\left(\cos (z) /\left(z^{2}+9\right)\right) / z
\end{aligned}=2 \pi i\left(\frac{\cos (0)}{\cos ^{2}+9}\right) \\
\\
\end{array} \quad 2 \pi i / 9
\end{aligned}
$$

Ex: $\quad \int_{0} \frac{d z}{z^{2}+4}$ where $\quad C=\{\mid z-i l=2\}$.

$$
\begin{aligned}
\text { Soln: }-\int_{c} & \frac{1 /(z+2 i)}{z-2 i} d z \\
& =2 \pi i \cdot 1 / 4 i \\
& =\pi / 2
\end{aligned}
$$

Theorem: Every complex polynomial of degree n has n roots counting multiplicity

Proof: - Spse $p(z)$ is a polynomial of degree n.

- If $p(z) \neq 0$, then $1 / p(z)$ is holomorphic for all z in \mathbb{C}.
- Consider the curve $C \quad \omega / \omega(t)=R \cdot e^{i t}$ for $0 \leq t \leq 2 \pi$.

$$
\begin{aligned}
\frac{1}{p(0)} & =\frac{1}{2 \pi i} \int_{c} \frac{1 / p(z)}{z} d z \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{1}{p\left(R e^{i t}\right)} d t
\end{aligned}
$$

- But $\left|\rho\left(R e^{i t}\right)\right| \rightarrow \infty$ as $R \rightarrow+\infty$

$$
\Rightarrow 1 / p\left(R e^{i t}\right) \rightarrow 0 \text { as } R \rightarrow+\infty
$$

$\Rightarrow 2 \pi i / p(0)=0$, a contradiction.

- $\Rightarrow 1 / p(z)$ is not holomorphic
$\Rightarrow p(z)$ has a root.

Remark: Please do course evaluations!

