Lecture \#20

Title: Divergence Theorem

- Complex numbers, polynomials, and functions

- Let E be a solid bounded by a closed surface ∂E
- Spse ∂E is pos. oriented (\dot{n} points outwards from E).
- Let $F=$ of whose comp. fans have cont. partial derivatives in a region that contains E.

$$
\iint_{\partial E} F \cdot d \vec{S}=\iiint_{E} \nabla \cdot F d V
$$

\rightarrow Also called Gauss's Theorem.
\leftrightarrow like the proof of Green's Theorem but w/ regions replaced by solids and curves replaced by surfaces.

Ex: Compute $\iint_{S} F \cdot d \vec{S}$ where
s $F=(z, y, x)$
$\therefore S=$ unit sphere

$$
\text { Soln: } \begin{aligned}
\quad \iint_{S} F \cdot d \vec{S} & =\iiint_{\text {Ball }} \nabla \cdot F d V \\
& =\iiint_{\text {Ball }} 0+1+0 d V \\
& =\iint_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{2} \sin (\phi) d p d \phi d \theta \\
& =4 \pi / 3
\end{aligned}
$$

Ex: \quad Compute $\iint_{s} F \cdot d \vec{S}$, where

$$
\Leftrightarrow F=\left(x y, y^{2}+e^{x z^{2}}, \sin (x y)\right)
$$

$\Leftrightarrow S=$ surface bounding the solid E that is contained by $z=1-x^{2}, z=0, y=0, y+z=2$

Soln: - Draw:

$$
\left.x y, y^{2}=e^{x z^{2}}, \sin (x y)\right)
$$

$$
\text { - } \begin{aligned}
\iint_{S} F \cdot d \vec{S} & =\iiint_{E} \nabla \cdot F d V \\
& =\iiint_{E} 3 y d V \\
& =\int_{-1}^{1} \int_{0}^{1-x^{2}} \int_{0}^{2-z} 3 y d y d z d x \\
& =\int_{-1}^{1} \int_{0}^{1-x^{2}} \frac{3}{2}(2-z)^{2} d z d x \\
& =\left.\int_{-1}^{1}\left(\frac{-1}{2}(2-z)^{3}\right)\right|_{0} ^{1-x^{2}} d x \\
& =\int_{-1}^{1}\left(\frac{-1}{2}\left(1+x^{2}\right)^{3}-\frac{-1}{2} 8\right) d x \\
& =\int_{0}^{1} 8-\left(1+x^{2}\right)^{3} d x \\
& =e t c
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Rem}: \quad \iiint_{E} & \operatorname{Div}(F) d V \\
& =\iint_{\partial E} F \cdot d \vec{S} \\
& =\iint_{S_{1}} F \cdot d \vec{S}+\iint_{S_{0}} F \cdot d \vec{S} .
\end{aligned}
$$

Picture:

Rem: If $\nabla \cdot F=0$, then $\iint_{s_{1}} F \cdot d \vec{S}=-\iint_{s_{2}} F \cdot d \vec{S}$ \rightarrow Amount flow in $=$ Amount flow out

Fact: $\nabla \cdot F=0$ if and only if $\nabla \times G=F$

Ex: Compute $\iint_{S} F \cdot d \vec{S}$ where

- $F=\left(x z, x^{2}, z^{2}\right)$
- $S=$ surf on $z=1-\sqrt{x^{2}+y^{2}}$ above $z=0$
w/ normal dir. pointing towards $x y$-plane

$$
\cdot \iiint_{E} \nabla \cdot F d V=-\iint_{S} F \cdot d \stackrel{\rightharpoonup}{S}-\iint_{S_{1}} F \cdot d \vec{S}
$$

where $S_{1}=$ unit disk in $x y$-plane w/ upwards orientation

$$
\begin{aligned}
& \cdot \nabla \cdot F=3 z \\
& \cdot \iiint_{E} 3 z d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r} r 3 z d z d r d \theta \\
&=2 \pi \int_{0}^{1} \frac{3}{2}(1-r)^{2} r d r \\
&=3 \pi \int_{0}^{1} r-2 r^{2}+r^{3} d r \\
&=3 \pi\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
&- S_{1}: \vec{r}(u, v)=(u, v, 0), \vec{r}_{u} \times \vec{r} v=(0,0,1)^{*} u p \\
& \Rightarrow \iint_{S_{1}} 0 \cdot d \vec{S}=0 \\
& \Rightarrow \iiint_{S} F \cdot d \vec{S}=3 \pi\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)
\end{aligned}
$$

Stokes like theorems in Dimension 3

$$
\text { Functions } \xrightarrow{\nabla} \text { Vector fields } \xrightarrow{\frac{\nabla x}{\text { curl }}} \text { Vector fields } \xrightarrow{\begin{array}{|}
\nabla \cdot \\
\text { div }
\end{array}} \text { Functions }
$$

$$
\begin{aligned}
\left.f\right|_{\partial c} \stackrel{F T L I}{=} & \int_{c} \nabla f \cdot d \vec{r} \\
& \int_{\partial S} F \cdot d \vec{r}= \\
& \iint_{S} \nabla \times F \cdot d \vec{s} \\
& \iint_{\partial E} F \cdot d \vec{S}=\iiint_{E} \nabla \cdot F d V
\end{aligned}
$$

- $\nabla \times(\nabla f)=0, \nabla \cdot(\nabla \times F)=0$
\leftrightarrow Apply two operators in a row gives 0 !
- $F=\nabla f$ if and only if $\nabla \times F=0$
- $F=\nabla \times G$ if and only if $\nabla \cdot F=0$

Complex Analysis (Calculus w/ Complex Numbers).

Definition: - A real polynomial is a $\operatorname{fon} f: \mathbb{R} \rightarrow \mathbb{R}$ of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

where each a_{i} is a real number.

- When $a_{n} \neq 0$, we say the degree of f is

$$
\operatorname{deg}(f)=n
$$

- If $f\left(x_{0}\right)=0$, then we say x_{0} is a root of f.

Example: $\quad f(x)=x^{77}-17 x^{66}+42 x-26$
$\Leftrightarrow \quad \operatorname{deg}(f)=77$
$\Leftrightarrow f(1)=0 \Rightarrow 1$ is a root.

Remark: - Not all real polynomials have real roots

- $f(x)=x^{2}+1$

If $f(x)=0$, then $0=x^{2}+1 \Rightarrow x^{2}=-1$.
But the square of a real number is never negative $\Rightarrow f$ has no roots

- There just aren't enough real numbers.
- If $i=\sqrt{-1}$, then $f(i)=0$ so f would have a soot.
- Need to male sense of such numbers.

Definition: The complex numbers \mathbb{C} is the set

$$
\mathbb{C}=\left\{(x, y) \text { in } \mathbb{R}^{2}\right\}=\left\{x+i y \mid(x, y) \text { in } \mathbb{R}^{2}\right\}
$$

is ie, a complex number is a formal sum $x+i y$ where x and y are real numbers.
$\leadsto x$ is called the real part of $x+i y$
s y^{-}- - imaginary

Notation: We will often write $z=x+i y$ to denote a complex number.

Remark: We can add complex numbers

$$
\begin{aligned}
& \quad\left(x_{0}+i y_{0}\right)+\left(x_{1}+i y_{1}\right)=\left(x_{0}+x_{1}\right)+i\left(y_{0}+y_{1}\right) \\
& \Leftrightarrow \\
& (18+7 i)+(-25-2 i)=-7+5 i
\end{aligned}
$$

Remark: We can multiply complex numbers by requiring $i^{2}=-1$

$$
\begin{aligned}
& \left(x_{0}+i y_{0}\right) \cdot\left(x_{1}+i y_{1}\right) \\
& \quad=x_{0} x_{1}+i\left(x_{0} y_{1}\right)+i\left(y_{0} x_{1}\right)+i^{2} y_{0} y_{1} \\
& \quad=x_{0} x_{1}-y_{0} y_{1}+i\left(x_{0} y_{1}+x_{1} y_{0}\right) \\
& \Leftrightarrow \\
& (2+i) \cdot\left(z-z_{i}\right)=14-14 i+z_{i}-z_{i}^{2}=21-7_{i}
\end{aligned}
$$

Definition: The norm of a complex number $x+i y$ is

$$
|x+i y|=\sqrt{x^{2}+y^{2}}
$$

Deft: The complex conjugate of a complex number $x+i y$ is $x-i y$

Rem: $\cdot|z|^{2}=z \cdot \bar{z}$

Remark: If $|u+i v| \neq 0$, then we can divide $x+i y$ by $u+i v$

$$
\begin{align*}
& \frac{x+i y}{u+i v} \\
& \begin{array}{l}
u-i v \\
= \\
u+i v
\end{array}=\frac{u-i v}{u-i v} \\
&=\frac{x+i y}{u+i v} \cdot \frac{u-i y}{u-i v} \\
&=\frac{(x+i y) \cdot(u-i v)}{u^{2}-i v v+i w-i^{2} v^{2}} \\
&=\frac{(x+i y) \cdot(u-i v)}{u^{2}+v^{2}}
\end{align*}
$$

We can mater sense of (t) since we can just scale the real and imaginary parts of numerator by the denominator, which is a real number

Remark: Just as we can tole about fans from \mathbb{R} to \mathbb{R}, we can talk about fans from \mathbb{C} to \mathbb{C}.

Definition: $\quad A$ fan $f: \mathbb{C} \rightarrow \mathbb{C}$ is an assignment of a complex number z to the complex number $f(z)$.
\Leftrightarrow e.g. $f(z)=z^{2}-17$

Definition: - A complex polynomial is a fan $f: \mathbb{C} \rightarrow \mathbb{C}$ of the form

$$
\begin{aligned}
& \text { egg. } \quad f(x)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0} \\
& f(z)=(1-i) .
\end{aligned}
$$

where each a_{i} is a complex number.

- When $a_{n} \neq 0$, we say the degree of f is

$$
\operatorname{deg}(f)=n
$$

- If $f\left(z_{0}\right)=0$, then we say z_{0} is a root of f.

Thy: Every complex polynomial of degree n has n roots (counting multiplicity).

Remark: - One way to define the fan $e^{x}: \mathbb{R} \rightarrow \mathbb{R}$ is via taylor's series:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \longrightarrow n!=n \cdot(n-1)
$$

Remark: So a Taylor series is approximated by a seq. of polynomials. These Taylor series have to satisfy some "convergence" properties, ie, this infinite sum alway needs to converge to something finite.
\leftrightarrow So some calculus is required to make this rigorous.
\rightarrow The calculus also carries over to the complex case. \Rightarrow Use Taylor series w/ complex numbers.

Definition: The complex exponential f on is the ton $e^{z}: \mathbb{C} \rightarrow \mathbb{C}$ given by

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Lemma: $\quad e^{i \theta}=\cos (\theta)+i \sin (\theta)$ for θ a real number.

Proof: We use the Taylor series for \sin and \cos and compute.

$$
(i)^{2 k}
$$

$$
\left((3)^{2}\right)^{r}
$$

$$
(-1)^{n}
$$

$$
\begin{aligned}
e^{i \theta} & =\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!} \\
& =\sum_{k=0}^{\infty} \frac{i^{2 k} \theta^{2 k}}{(2 k)!}+\sum_{l=0}^{\infty} \frac{i^{2 l+1} \theta^{2 l+1}}{(2 k+1)!} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k}}{(2 k)!}+i \sum_{l=0}^{\infty} \frac{(-1)^{\ell} \theta^{2 l+1}}{(2 k+1)!} \\
& =\cos (\theta)+i \sin (\theta)
\end{aligned}
$$

Cordlary: $\quad e^{i \pi}=-1$

Remark: - We identify \mathbb{C} w/ \mathbb{R}^{2} via $x+i y \leftrightarrow(x, y)$ \rightarrow Suggest polar form for cpa numbers

$$
r e^{i \theta}=r \cos (\theta)+i r \sin (\theta) \longleftrightarrow(r \cos (\theta), r \sin (\theta))
$$

cs gives gean intuition for $1-1$
$|x+i y|=|(x, y)|=$ distance from (x, y) to the origin

$$
\left|r e^{i \theta}\right|=|r|
$$

\leftrightarrows gives geom intuition for \bar{z}.

$$
\bar{z}=x-i y \longleftrightarrow(x,-y)
$$

\Rightarrow - reflects \mathbb{C} across real-axis (x-axis).

