Le	ectu	re #	20												
Tit	le °	•	Dive	rgen	ce	Theor	em								
		•	Com	plex	ทแห	nbers.	, poly	nomi	als,	and	fun	ction	S		
							•								

Divergence Theorem
Divergence Theorem

$$Mm^{\circ}$$
 (Divergence Theorem)
 \cdot Let E be a solid bounded by a closed surface ∂E
 \cdot Spse ∂E is pos. oriented (\hat{n} points outwards from E).
 \cdot Let F = vf whose comp. fons have cont. partial
derivatives in a region that contains E.
 $\int \int_{\partial E} F \cdot d\hat{s} = \int \int \int_{E} \nabla \cdot F \, dV$
 \downarrow Also called Gauss's Theorem.
 \downarrow like the proof of Green's Theorem but w/ regions
replaced by solids and curves replaced by surfaces.

									1		1	 	
Ex :		Com	pute s F s S	[]s	F۰a	, گل	where						
		Ľ	∘ F	=	(2,,	(,x)							
		Ĺ	- S	= 1	unit.	sphe	re						
Solne	•	_ ال	; F·a	12 =	SSS	Ball	V·F	40					
				=	$\int \int \int$	Ball	0 +	1+0	٩v				
				Ľ	۲ <u>۲</u>	Γ ^π Γ,	, ρ ² ε	5în (4	a) d	0 d %	10		
					47								

$$\int \int_{S} F \cdot d\vec{x} = \int \int_{E} \nabla F \, dv$$

$$= \int \int_{C} \frac{3}{7} \, dV$$

$$= \int_{-1}^{1} \int_{0}^{1-x^{2}} \frac{3}{2} (2-2)^{2} \, dz \, dx$$

$$= \int_{-1}^{1} \left(\frac{-1}{2} (2-2)^{2} \, dz \, dx \right)$$

$$= \int_{-1}^{1} \left(\frac{-1}{2} (1+x^{2})^{3} - \frac{-1}{2} \, dz \right) \, dx$$

$$= \int_{0}^{1} \left(\frac{-1}{2} (1+x^{2})^{3} - \frac{-1}{2} \, dz \right) \, dx$$

$$= \int_{0}^{1} \left(\frac{-1}{2} (1+x^{2})^{2} \, dx \right)$$

$$= e f c$$

•
$$\begin{aligned} SJJ_E \nabla \cdot F \, dV &= - \int \int_S F \cdot d\vec{S} - \int \int_S F \cdot d\vec{S} \\ where \quad S_i = unit \quad disk \quad in \quad xy - plane \quad w/ \\ upwards \quad orientation \\ \bullet \quad \nabla \cdot F = 3z \\ \bullet \quad SJJ_E \quad 3z \quad dV = \int_a^{2\pi} \int_a^1 \int_a^{1-r} r \cdot 3z \quad dz \quad dr \quad d\Theta \\ &= 2\pi \int_a^1 \frac{7}{2}(1-r)^2 r \, dr \\ &= 3\pi \int_a^1 (r - 2r^2 + r^3) \, dr \\ &= 3\pi \left(\frac{1}{2} - \frac{3}{3} + \frac{1}{4}\right) \\ \bullet \quad S_i &= \vec{r} (u, v) = (u, v, o) , \quad \vec{r}_u \times \vec{r}_v = (o, o, i) \quad up \\ &= s \quad JJ_{S_i} \circ \cdot d\vec{S} = O \\ &= s \quad SJ_S F \cdot d\vec{S} = 3rr \left(\frac{1}{2} - \frac{3}{3} + \frac{1}{4}\right) \end{aligned}$$

Example:
$$f(x) = x^{77} - i7x^{66} + 42x - 26$$

is deg $(F) = 77$
is $f(i) = 0 = 21$ is a root.
Remark: Not all real polynomials have real roots
 $f(x) = x^2 + 1$
If $f(x) = 0$, then $0 = x^2 + 1 = 2x^2 = -1$.
But the square of a real number is never negative
 $= 2 f$ has no roots
There just aren't enough real numbers.
If $i = \sqrt{1}$, then $f(i) = 0$ so f would have a root.
Need to make sense of such numbers.

							-		_						
Defin	ition [°]	The	com	plex	numb	ers	C.	is fh	e se	Ł					
								} =			(×,	,y) ii		2 }	
								ber i							
						•		are						/	
		l					•	real							
								imagir	•			-			
-			, , , , , , , , , , , , , , , , , , ,					J							
Nota	tion °	We	w:ll	off	en	write	, :	2 =	X + -	iy	$\mathbf{t}_{\mathbf{D}}$	denot	re a	•	
			nplex												
			•												

Remark:	We	can ada	comple,	c numbers			
			•) + ; (y. + ·	γι)
	دې) = -7*		
Remark S	We	can m	ultiply ce	omplex nu	mbers by	requiring	;² = - l
) · (x L + i				
		= x	•×(+ ;	(xoy, \ +	i (yo X,) t	· 12 Yoy.	
		= X	ς.×ι - γ.	-γ1 + i(×	• y . + × . y	.)	
	و	» (2+i) · (7 - 7;	5) = 14 -	· 14: + 7: -	$7_{i}^{2} = 21$	- 7;
					· · · · · · · · · · · · · · · · · · ·		

Defin	ition °		The	worn						ner		iy	is		
					1	X +1	iyl :	= √	X ²	t y ²					
Defn	0		The	COM	role.x	C.M	in an	1.	£	0	C D M	lex		lae.c	
+011							yuya X -			٥					
				•											
Rem	Ф , 0	٠	2	² =	Z	· Z									

Rem	arK:	If	U +	ivl	≠0	, th	en w	e ca	m d	ivide	×·	+ ì y	by 1	<i>L</i> + iv
					<u> </u>	· .								
			U +	iv	U-	·iv		ν+i [.]	V	u -	iv			
								((X+i	y).	(u-	i∨)		
		*	u - i =	~				u²	- i v	V+ju	ev -	i²∨²		
			u.	iv				(iy)	· (u-	· iv)			
								8	ι ² +	v²				
							=	(x ·	tiy)	· (r	- iv)			
									u +	いし	2		(⊈)	
		We	Can	m	ake	sense	e of	(*)) sir	nce i	ne	can	just	
					real									
					inatos			,						

Remark:	ב	<i>fust</i> a	25 W	e ca	.n ta	alk a	eb out	; fcr	rs fr	02	R	to T	ζ ,	
	ι	ve c	an ta	alk	abou	t fo	in S	from		to	C.			
Definition ⁸		fcn							_			a c	omple	×
	n	umber							ber	\$(z).			
		Ls e	.g.	\$ (₹	;) =	2²	- 17	7-						

RemarK°	• 0	ne wa	y to	define	the fa	en e [*]	· R	→ R	[5 VI	a taylos	~ ' 3
	S	eries ⁶	0								
				٥×	8	×			n n	$= n \cdot (n)$	
				C	= n=0	n	!			. (n-e) (2) (1	·).
RemarK:	S	0 a	Taylo	r Seri	es is a	pproxiv	nate d	by a s	eq. of	polynom	als.
									•	gence"	
									_) mverge t	0
										0	
			9						e Hhis	rigocous	•
										lex cas	
					ylor seri						

Remark: We identify
$$\mathbb{C}$$
 w/ \mathbb{R}^2 via $x + iy \leftrightarrow (x,y)$
Suggest polar form for cpx numbers
 $re^{i\theta} = r\cos(\theta) + jr\sin(\theta) \leftrightarrow (r\cos(\theta), r\sin(\theta))$
gives geon intuition for $|\cdot|$
 $|x + iy| = |(x,y)| = distance from (x,y) to the origin$
 $|re^{i\theta}| = |r|$
 $gives geon intuition for \overline{Z} .
 $\overline{Z} = x - iy \leftrightarrow (x, -y)$
 $= > \overline{reflects} \ C \ across real - axis (x-axis).$$