Lecture * 19

Title: Stokes's Theorem

Section: Stewart 16.8

Defn: Let S be an oriented surface w/ unit normal vector \vec{n} and param. $\vec{r}(u, v)$. The surface integral of F over S is

$$
\begin{aligned}
\iint_{S} F \cdot d \vec{S} & =\iint_{S} F \cdot \vec{n} d S \\
& =\iint_{D} F(\vec{r}(u, v)) \cdot \frac{\left(\vec{r}_{u} \times \vec{r}_{v}\right)}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left|\vec{r}_{u \times} \times \vec{r}_{v}\right| d A \\
& =\iint_{D} F(\vec{r}(u, v)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d A
\end{aligned}
$$

Also called flux of F across S.

Warm-up: Compute $\iint_{S} F \cdot \vec{n} d \vec{S}$ where

$$
F=\left(-x,-y, z^{3}\right)
$$

$S=$ part of cone $z=\sqrt{x^{2}-y^{2}}$ between $z=1$ and $z=3$ w) downward orientation.

$$
\begin{aligned}
\text { Soln: } \quad & \vec{r}(u, v)=\left(u, v, \sqrt{u^{2}+v^{2}}\right), 1 \leq \sqrt{u^{2}+v^{2}} \leq 3 \\
\cdot & \vec{r}_{u} \times \vec{r}_{v}=\left(\frac{-u}{\sqrt{u^{2}+v^{2}}}, \frac{-v}{\sqrt{u^{2}+v^{2}}}, 1\right)^{n} \text { upwards } \\
\text { • } & F(\vec{r}(u, v)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right)= \\
& =\left(-u,-v,\left(u^{2}+v^{2}\right)^{3 / 2}\right) \cdot\left(\frac{-u}{\sqrt{u^{2}+v^{2}}}, \frac{-v}{\sqrt{u^{2}+v^{2}}}, 1\right) \\
= & \sqrt{u^{2}+v^{2}}+\left(u^{2}+v^{2}\right)^{3 / 2} \\
\quad & \iint_{S} F \cdot \vec{n} d \vec{s}=-\int_{0}^{2 \pi} \int_{1}^{3} r\left(r+r^{3}\right) d r d \theta=\text { etc. }
\end{aligned}
$$

Defn: Let S be an oriented surface w/ boundary. The orientation of S induces pos. orientation of boundary curve.

Picture:

Rem: Use the right-hand rule.

Theorem: Let $S=$ oriented surface that is bounded by closed, piecewise smooth boundary curve (s) ∂S w/ the pos. orientation.
Let $F=v f$ on \mathbb{R}^{3} whose component fens have continuous partial derivatives on region that contains S.

$$
\int_{\partial S} F \cdot d \vec{r}=\iint_{S} \nabla \times F \cdot d \vec{S}
$$

Ex: - Spse $D=$ region in $x y$-plane.

- Apse $F=(P(x, y), Q(x, y), 0)$
- $\vec{r}(u, v)=(u, v, 0)$ wt (u, v) in S
- $\vec{r}_{u}=(1,0,0), \vec{r}_{v}=(0,1,0)$
- $\nabla \times F=\left|\begin{array}{ccc}i & \dot{y} & \vec{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ P & Q & 0\end{array}\right|=\left(0,0, Q_{x}-P_{y}\right)$

$$
\text { - } \begin{aligned}
\iint_{D} Q_{x}-P_{y} d A & =\iint_{D}(\nabla \times F) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d A \\
& =\iint_{D}(\nabla \times F) \cdot d \vec{S} \quad \text { Stokes's } \\
& =\int_{\partial D} F \cdot d \vec{r} \quad \text { Theorem }
\end{aligned}
$$

\Rightarrow This is Green's Theorem.

Ex: Compute $\int_{C} F \cdot d \vec{r}$ where

$$
\Leftrightarrow F=\left(-y^{2}, x, z^{2}\right)
$$

$\rightarrow C=$ intersection of plane $y+z=2$ and cylinder $\quad x^{2}+y^{2}=1$.
Oriented counter clockwise from above

- Intersection: Some ellipse
- $\int_{C} F \cdot d \vec{r}=\iint_{S} \nabla \times F \cdot d \vec{S}$, where S^{*} is the graph of $f(x, y)=2-y$ over disk of radius 1 .

$$
\begin{aligned}
\cdot & \vec{r}^{\prime}(u, v) \\
\vec{r}_{u}(u, v) & =(u, v, 2-v) \\
\vec{r}_{v}(u, v) & =(0,0,0) \\
\vec{r}_{u} \times \vec{r}_{v} & =\left|\begin{array}{ccc}
\vec{\imath} & j & k \\
1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right|=(0,1,-1) \\
\cdot & \nabla \times F=\left|\begin{array}{ccc}
\vec{i} & j & k \\
\partial / \partial x & \partial / 2 y & \partial / 2 z \\
-y^{2} & x & z^{2}
\end{array}\right|=(0,0,1+2 y)
\end{aligned}
$$

$$
\begin{aligned}
\cdot \int_{c} F \cdot d \vec{r} & =-\iint_{S}(0,0,1+2 v) \cdot(0,1,-1) d A \\
& =\iint_{S} 2 v+1 d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r(2 r \sin (\theta)+1) d r d \theta \\
& =\int_{0}^{2 \pi} \frac{2}{3} \sin (\theta)+\frac{1}{2} d \theta \\
& =\pi
\end{aligned}
$$

Rem: Trick is to find a simple bounding surface

Ex: Compute $\iint_{S} \nabla \times F \cdot d \vec{S}$ where

$$
\Leftrightarrow F=(x z, y z, x y)
$$

$\rightarrow S=$ part of sphere $x^{2}+y^{2}+z^{2}=4$ inside the cylinder $x^{2}+y^{2}=1$

Solv:
Draw:

- Intersection: $x^{2}+y^{2}=1$ and $x^{2}+y^{2}+z^{2}=4 \Rightarrow z^{2}=3$

$$
\Rightarrow \partial S: \vec{r}(t)=(\cos (t), \sin (t), \sqrt{3})
$$

for $0 \leq t \leq 2 \pi$

- Stothes Thr:

$$
(x z, y z, x y)
$$

$$
\begin{aligned}
\iint_{S} \nabla \times F \cdot d \vec{S} & =\int_{2 S} F \cdot d \vec{r} \\
& =\int_{0}^{2 \pi}(\sqrt{3} \cos (t), \sqrt{3} \sin (t), \cos (t) \sin (t)) \\
& \cdot(-\sin (t), \cos (t), 0) d t \\
& =\int_{0}^{2 \pi} 0 d t \\
& =0
\end{aligned}
$$

Rem: If S_{1} and S_{2} both bound C, then

$$
\iint_{S_{1}} \nabla \times F d \vec{S}=\int_{c} F \cdot d \vec{r}=\iint_{S_{2}} \nabla \times F d \vec{S}
$$

Picture:

Rem: Sometimes one bounding surface will be easier to compute w/ than another.

Thu: Sase $F=$ of w/ comp. fans having continuous partial derivatives. Then F is conservative if and only if $\nabla \times F=0$.

Proof: - Previously, $\nabla \times(\nabla f)=0$
\Rightarrow If F is conservative, then $\nabla \times F=0$.

- Suse $\nabla \times F=0$.

Spae $C=$ closed curve.
There exists some surface S st $\partial S=C$.

$$
\begin{aligned}
& \Rightarrow \int_{c} F \cdot d \vec{r}=\iint_{S} \nabla \times F \cdot d \vec{S}=\iint_{S} 0 d S=0 \\
& \Rightarrow \int_{c} F \cdot d \vec{r}=0 \text { for all closed curves } C
\end{aligned}
$$

$\Rightarrow F$ is conservative.

Example: Compute $\iint_{S} \nabla \times F d \vec{S}$

$$
F=\left(-y, x, z^{2}\right)
$$

$S=$ part of cone $z=\sqrt{x^{2}-y^{2}}$ between $z=1$ and $z=3$ w) downward orientation.

Soln:

$$
\begin{aligned}
& \text { - } \vec{r}_{1}(t)=(\cos (t), \sin (t), 1) \\
& \vec{r}_{2}(t)=(3 \cos (t), 3 \sin (t), 3) \\
& \text { - } \quad \dot{r}_{1}^{\prime}(t)=(-\sin (t), \cos (t), 0) \\
& \vec{r}_{2}^{\prime}(t)=(-3 \sin (t), 3 \sin (t), 0) \\
& \text { - } F\left(\vec{r}_{1}\right) \cdot \vec{r}_{1}^{\prime}=\sin ^{2} t+\cos ^{2} t=1 \\
& F\left(\vec{r}_{2}\right) \cdot \vec{r}_{2}=9 \\
& \text { - } \iint_{S} \nabla F \cdot d \vec{S}=+\int_{0}^{2 \pi} 1 d t-\int_{0}^{2 \pi} q d t=-16 \pi
\end{aligned}
$$

Divergence Theorem

* The surface has no boundary curves.

Thy: (Divergence Theorem)

- Let E be a solid bounded by a closed surface ∂E
- Spse ∂E is pos. oriented (\dot{n} points outwards from E).
- Let $F=$ of whose comp. fans have cont. partial derivatives in a region that contains E.

$$
\iint_{\partial E} F \cdot d \vec{S}=\iiint_{E} \nabla \cdot F d V
$$

\rightarrow Also called Gauss's Theorem.
\rightarrow like the proof of Green's Theorem but w/ regions replaced by solids and curves replaced by surfaces.

Stokes like theorems in Dimension 3

$$
\text { Functions } \xrightarrow{\nabla} \text { Vector fields } \xrightarrow{\text { curl }} \text { Vector fields } \xrightarrow{\text { div }} \text { Functions }
$$

$$
\begin{aligned}
\left.f\right|_{\partial C} \stackrel{F T L I}{=} \quad & \int_{C} \nabla f \cdot d \vec{r} \\
& \int_{\partial S} F \cdot d \vec{r}= \\
& \iint_{S} \nabla \times F \cdot d \vec{s} \\
& \iint_{\partial E} F \cdot d \vec{S}=\iiint_{E} \nabla \cdot F d V
\end{aligned}
$$

- $\nabla \times(\nabla f)=0, \nabla \cdot(\nabla \times F)=0$
\triangle Apply two operators in a row gives 0 !
- $F=\nabla f$ if and only if $\nabla \times F=0$
- $F=\nabla \times G$ if and only if $\nabla \cdot F=0$???

