Lec	ture ⁷	* 19									
Titl	eo	Sta	okes'	s Ir	eorer	n					
Sect	ion 🖁	S	tewa	rt I	6.8						

Warm-up: Compute IIs F.
$$\vec{n}$$
 d \vec{s} where
 $F = (-x, -y, z^3)$
 $S = pact of cone z = \sqrt{x^2 - y^2}$ between $z = 1$ and
 $z = 3$ w) downwood orientation.
Soln: $\vec{r}(u, v) = (u, v, \sqrt{u^2 + v^2}), 1 \le \sqrt{u^2 + v^2} \le 3$
 $\vec{r}_u \times \vec{r}_v = (\frac{-u}{\sqrt{u^2 + v^2}}, \frac{-v}{\sqrt{u^2 + v^2}}, 1)^2$ upwords
 $F(\vec{r}(u, v)) \cdot (\vec{r}_u \times \vec{r}_v) =$
 $= (-u, -v, (u^2 + v^2)^{3/2}) \cdot (\frac{-u}{\sqrt{u^2 + v^2}}, \frac{-v}{\sqrt{u^2 + v^2}}, 1)$
 $= \sqrt{u^2 + v^2} + (u^2 + v^2)^{3/2}$
 $Sl_s F. \vec{n}$ d $\vec{s} = -\int_{0}^{2\pi} \int_{1}^{3} r (r + r^2) dr d\theta = etc.$

Ex	0 9	•	Spse D=	· regio	n in X	y-plane.		
		•	Spse F=	ں ډ) P ()	۲, (۲, x) م	, (y) o)		
		•	デ(u,v) =	(u,v,	o) w/	(U,V) in	S	
		•	Tu = (1,0	,°) , (ř. = (o,	(,0)		
		•	V×F =	ź	Ŷ	<u>1</u> 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	(٥,٥, @×	- Py)
				əyr	alay	2/22		
				P	Q	0		
		•	∬D Qx-	Py JA	$=$ $\iint_{D} ($	v×F)•(Tu	× ţ^) 94	
					$=$ S_{D} (v×F)· ds	5	stokes's
						= ·di	<i>V</i>	Theorem
			=> This is	s Gre	ien's The	eorem.	× lies	in xy-plane

•
$$\int_{C} F \cdot d\vec{r} = \iint_{S} \nabla \times F \cdot d\vec{S}, \text{ where } S \text{ is the}$$

$$graph of \quad f(\times,\chi) = 2-\gamma \quad \text{over } disk \text{ of } radius 1.$$
•
$$f(u,v) = (u,v,2-v)$$

$$\vec{r}_{v}(u,v) = (0,1,-1) \quad \text{bownwards } pointing !$$

$$\vec{r}_{v}(u,v) = (0,1,-1) \quad \text{bownwards } pointing !$$
•
$$\vec{r}_{u} \times \vec{r}_{v} = |1 \quad 0 \quad 0| = (0,1,-1)$$
•
$$\nabla \times F = |\vec{1} \quad \vec{f} \quad K| = (0,0,1+2\gamma)$$

$$\frac{\partial}{\partial_{\lambda}} = \frac{\partial}{\partial_{\gamma}} \frac{\partial}{\partial_{\gamma}} \frac{\partial}{\partial_{\gamma}} z$$

•
$$\int_{C} F \cdot d\vec{r} = -\iint_{S} (0,0,1+2v) \cdot (0,1,-1) dA$$

$$= \iint_{S} 2v + 1 dA$$

$$= \iint_{S} (0,0,1+2v) \cdot (0,1,-1) dA$$

$$= \iint_{S} (0,0,1+2v) \cdot (0,1+2v) \cdot (0,1,-1) dA$$

$$= \iint_{S} (0,0,1+2v) \cdot (0,1,-1) dA$$

• Stokes Thm:

$$(\times Z, \gamma Z, \times \gamma)$$

$$\iint_{S} \nabla x F \cdot d\vec{S} = \int_{\partial S} F \cdot d\vec{r}$$

$$= \int_{0}^{2\pi} (4\vec{S} \cos(t), \sqrt{3} \sin(t), \cos(t) \sin(t))$$
• (-sin(t), cos(t), 0) dt
$$= \int_{0}^{2\pi} 0 dt$$

$$= 0$$

Thms		Spse F = vf w/ comp. fons having continuous	
		partial derivatives. Then F is conservative if	
		and only if $\nabla \times F = O$.	
Proof?	0	Previously, $\nabla \times (\nabla f) = 0$	
		=> If F is conservative, then $\nabla \times F = 0$.	
	•	Spse $\nabla \times F = 0$.	
		Spse C = closed curve.	
		There exists some surface S st $\partial S = C$.	
		$\Longrightarrow \int_{C} F \cdot d\vec{r} = \iint_{S} \nabla \times F \cdot d\vec{s} = \iint_{S} O \ dS = O$	
		=> JcF·dr = O for all closed curves C	
		=> F is conservative.	Δ
the second se	1		

Example: Compute
$$\iint_{S} \nabla x F d\hat{S}$$

 $F = (-\gamma, x, z^{2})$
 $S = pact of cone $z = \sqrt{x^{1}-y^{2}}$ between $z = 1$ and
 $z = 3$ w/ downwood orientation.
Soln: $\hat{C}_{1}(t) = (cos(t), sin(t), 1)$
 $\hat{C}_{2}(t) = (3cos(t), 3sin(t), 3)$
 $\hat{C}_{1}'(t) = (-sin(t), cos(t), 0)$
 $\hat{C}_{1}'(t) = (-sin(t), 2sin(t), 0)$
 $\hat{C}_{1}'(t) = (-3sin(t), 3sin(t), 0)$
 $\hat{C}_{1}'(t) = (-3sin(t), 3sin(t), 0)$
 $\hat{C}_{1}'(t) = (-3sin(t), 3sin(t), 0)$
 $\hat{C}_{1}(t) = (-3sin(t), 3sin(t), 0)$
 $\hat{C}_{2}(t) = (-3sin(t), 3sin(t), 0)$
 $\hat{C}_{$$

Di	verge	nce	Theo	rem	-							* 1	ne su no loi	rface unda	e has sy s.
Πhm	0	(D:	verqu	rce	Theore	em)									
		-	Let	Εļ	pe a	solia	5 6,	unde	46	y a	clos	red s	surfa	ce	ЭE
		•	Spse	. 9	E i	s po	5. 01	iente	1 (ń po	ints	outw	ards	from	E).
		•	Let	F=	vf	whos	e con	np. ·	fcns	hav	e c	ont.	part	ial	
			deri	vativ	es in	n a	regio	n th	at c	ontair	is E	•			
]]	F	- 12	=		$\nabla \cdot$	F d\	<i>(</i>			
					0021	F									
			ل	Als	o <i>C</i> a	alled	Ga	xss's	The	orem	•				
			L	> liK	e the	2 proc	f of	Gre	en's [']	Theor	en b	ut i	~/ (i	eg;m:	5
				re	placed	Ьу	solid	s and	s cu	rves	repla	ced	by s	urfac	2es.

