$$
\text { Lecture * } 18
$$

Title: Surface Integrals of Vector Fields

Section: Stewart 16.7

Review: The surface integral of $f(x, y, z)$ over S is

$$
\begin{aligned}
& \iint_{S} f d S \\
& \quad=\iint_{D} f(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A \\
& =\iint_{D} f(x(u, v), y(u, v), z(u, v)) \cdot\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
\end{aligned}
$$

where S has aram eqn

$$
\vec{r}(u, v)=(x(u, v), y(u, v), z(u, v))
$$

$w / u, v$ in D.

Warmup: Give a double integral expression for $\iint_{S} e^{x} \sin (z) d S$ where S is the part of the cylinder $1=x^{2}+z^{2}$ that is between $z=0, y=0$, and $z=2-y$

Soln:

- Draw:

$$
\begin{aligned}
& \cdot \vec{r}(u, v)=(\cos (u), v, \sin (u)) \\
& \quad 0 \leq u \leq \pi, \quad 0 \leq v \leq 2-\sin (u) \\
& \cdot \vec{r}_{x}=(-\sin (u), 0, \cos (u)) \\
& \vec{r}_{v}=(0,1,0)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{r}_{u} \times \dot{r}_{v}=\left|\begin{array}{ccc}
i & j & k \\
-\sin (u) & 0 & \cos (u) \\
0 & 1 & 0
\end{array}\right|=(-\cos (u), 0,-\sin (u)) \\
& \cdot \iint_{S} x y d S=\int_{0}^{\pi} \int_{0}^{2-\sin (u)} e^{\cos (u)} \sin (\sin (u)) d v d u .
\end{aligned}
$$

Orientations

Defn: A surface S is orientable if one can choose a normal vector at every point in S st the normal vectors vary continuously over S.

Picture:

Remark: If S is orientable w/ param equ $\vec{r}(u, v)$, then we have unit normal vectors:

$$
\vec{n}=\frac{\vec{r}_{x} \times \vec{r}_{v}}{\left|\vec{r}_{x} \times \vec{r}_{v}\right|}
$$

Ex:

$$
\begin{aligned}
\vec{r}(u, v) & =(a \cos (u) \sin (v), a \sin (u) \sin (v), a \cos (v)) \\
\vec{r}_{u} \times \vec{r}_{v} & =\left(a^{2} \sin ^{2}(v) \cos (u), a^{2} \sin ^{2}(v) \sin (u), a^{2} \sin (v) \cos (u)\right) \\
\left|\vec{r}_{u} \times \vec{r}_{v}\right| & =a^{2} \sin (v) \\
\Rightarrow \vec{n} & =(\sin (v) \cos (u), \sin (v) \sin (u), \sin (v) \cos (u)) \\
& =(x, y, z) / a \\
& =\vec{r} / a
\end{aligned}
$$

Deft: - If S bounds a solid E, then S is said to be closed.

- A positive orientation is one for which \vec{n} points outwards from E
neg.

Picture:

Surface Integrals of Vector Fields

Defn: Let S be an oriented surface $\omega /$ unit normal vector \vec{n} and param. $\vec{r}(u, v)$. The surface integral of F over S is

$$
\begin{aligned}
\iint_{S} F \cdot d \vec{S} & =\iint_{S} F \cdot \vec{n} d S \\
& =\iint_{D} F(\vec{r}(u, v)) \cdot \frac{\left(\vec{r}_{u} \times \vec{r}_{v}\right)}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A \\
& =\iint_{0} F(\vec{r}(u, v)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d A
\end{aligned}
$$

Also called flux of F across S.

Ex: Compute $\iint_{S} F \cdot d \dot{S}$ where

$$
\leftrightarrow F(x, y, z)=(x, y, z)
$$

$\rightarrow S$ is the boundary of the solid E, where E is solid enclosed by $z=1-x^{2}-y^{2}, z=0$

Soln: - Draw:

- $S_{1}=$ paraboliod part
$S_{2}=$ Disk part.
- $\quad \vec{r}_{1}(u, v)=\left(u, v, 1-u^{2}-v^{2}\right)$
$\vec{r}_{2}(u, u)=(u, v, 0)$
- $\vec{r}_{, u} \times \vec{r}_{1 v}=\left|\begin{array}{ccc}i & j & k \\ 1 & 0 & -2 u \\ 0 & 1 & -2 v\end{array}\right|=(+2 u,+2 v, 1)$

This normal points outwards!

$$
\begin{aligned}
\iint_{S_{1}} F \cdot d \vec{S} & =\iint_{D}\left(u, v, 1-u^{2}-v^{2}\right) \cdot(+2 u,+2 v, 1) d A \\
& =\iint_{D} 2 u^{2}+2 v^{2}+1-u^{2}-v^{2} d A \\
& =\iint_{D} u^{2}+v^{2}+1 d A \\
& =2 \pi \int_{0}^{1} r^{3}+r d r \\
& =2 \pi\left(\frac{1}{4}+\frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \vec{r}_{2 u} \times \vec{r}_{2 v}=\left|\begin{array}{ccc}
i & i & k \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|=(0,0,1) \\
& \Rightarrow \iint_{S_{2}} F \cdot d \vec{S}=\iint_{D}(u, v, 0) \cdot(0,0,1) d A=0
\end{aligned}
$$

Rem: - \measuredangle between $F(\vec{r}(u, v))$ and \vec{n} is $<90^{\circ}$

$$
\begin{aligned}
& \Rightarrow \quad F(\vec{r}(u, v)) \cdot \vec{n} \geqslant 0 \\
& \Rightarrow \quad \iint_{S} F \cdot d \vec{S} \geqslant 0
\end{aligned}
$$

. . $\quad . \quad . \quad=90^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & =0 \\
\Rightarrow & \iint_{S} F \cdot d \vec{S}=0
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad-\quad-\quad>90^{\circ} \\
& \Rightarrow \quad-\quad-0 \\
& \Rightarrow \int J_{s} F \cdot d \vec{s} \leq 0
\end{aligned}
$$

$\leftrightarrow \iint_{S} F \cdot d \dot{S}$ measures total amount that F flows through the surface S in the direction of \vec{n}.

Exercise: Compute $\iint_{S} F \cdot d \vec{S}$ where
$\rightarrow S$ has param. $\vec{r}(u, v)=(v \cos (u), v \sin (u), u)$ $w / 0 \leq u \leq 2 \pi, 1 \leq v \leq 2$ and is oriented upwards

$$
\rightarrow F(x, y, z)=(x, y, z)
$$

Soln: $\cdot \vec{r}_{u}=(-v \sin (u), v \cos (u), 1)$
$\vec{r}_{v}=(\cos (u), \sin (u), 0)$

$$
\vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
i & x^{\prime} & k \\
-v \sin (u) & v \cos (u) & 1 \\
\cos (u) & \sin (u) & 0
\end{array}\right|=(-\sin (u), \cos (u),-v)
$$

- $\dot{r}_{u} \times \vec{r}_{v}$ is downwards pointing.

$$
\begin{aligned}
& \iint_{S} F \cdot d \vec{S} \\
= & -\int_{0}^{2 \pi} \int_{1}^{2}(v \cos u, v \sin u, u) \cdot(-\sin (u), \cos (u),-v) d v d u \\
= & -\int_{0}^{2 \pi} \int_{1}^{2}-u v d v d u \\
= & \int_{0}^{2 \pi} \frac{u}{2}(3) \\
= & 6 \pi^{2}
\end{aligned}
$$

Rem: $\quad S: z=g(x, y) \leftrightarrow f^{-1}(0)$, where $f(x, y, z)=z-g(x, y)$ $\Rightarrow \nabla f$ is normal vector to the surface.

$$
\begin{aligned}
& \vec{r}(u, v)=(u, v, g(u, v)) \\
& \vec{r}_{u}=\left(1,0, g_{u}\right), \vec{r}_{v}=(0,1, g v) \\
& \Rightarrow \vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
i & \dot{i} & k \\
1 & 0 & g_{u} \\
0 & 1 & g_{v}
\end{array}\right| \\
&=\left(-g_{u},-g v, 1\right) \\
&=\nabla f(\vec{r}(u, v))
\end{aligned}
$$

Ex: \quad Set-up $\quad \iint_{S} F \cdot d \vec{S}$ where S is the upwards oriented paraboloid $z=x^{2}+y^{2}$ over the unit disks and $F=(x, 0, z)$.

Soln: - $S=f^{-1}(0)$ where $f(x, y, z)=z-x^{2}-y^{2}$

- $\quad r(u, v)=\left(u, v, x^{2}+y^{2}\right)$ w/ u, y in unit distr.

$$
\begin{aligned}
\Rightarrow \vec{r}_{u} \times \vec{r}_{v} & =\nabla f(\vec{r}(u, v)) \quad \int_{S} \nabla f=(-2 x,-2 y, 1) \\
& =(-2 u,-2 v, 1) \text { umwarbs } \\
\iiint_{S} F \cdot d \stackrel{S}{S} & =\iint_{D}\left(u, 0, u^{2}+v^{2}\right) \cdot(-2 u,-2 u, 1) d A \\
& =\iint-2 u^{2}+u^{2}+v^{2} d A \\
& =\text { etc. }
\end{aligned}
$$

Defy: Let S be an oriented surface w/ boundary. The orientation of S induces pos. orientation of boundary curve.

Picture:

Rem: Use the right-hand rule.

Theorem: Let $S=$ oriented surface that is bounded by closed, piecewise smooth boundary curve (s) ∂S $w /$ the pos. orientation.
Let $F=$ of on \mathbb{R}^{3} whose component fens have continuous partial derivatives on region that contains S.

$$
\int_{\partial S} F \cdot d \vec{r}=\iint_{S} \nabla \times F \cdot d \vec{S}
$$

Stokes like theorems in Dimension 3

$$
\text { Functions } \xrightarrow{\nabla} \text { Vector fields } \xrightarrow{\text { curl }} \text { Vector fields } \xrightarrow{\text { div }} \text { Functions }
$$

$$
\begin{aligned}
\left.f\right|_{\partial C} \stackrel{\text { FILE }}{=} & \int_{c} \nabla f \cdot d \vec{r} \\
& \int_{\partial s} F \cdot d \vec{r}=\iint_{s} \nabla \times F \cdot d \vec{s} \\
& \int_{?} ? d ?=\int_{?} \nabla \cdot ? d ?
\end{aligned}
$$

- $\nabla \times(\nabla f)=0, \nabla \cdot(\nabla \times F)=0$
\leadsto Apply two operators in a row gives 0 !
- $F=\nabla f$ if and only if $\nabla \times F=0$
- $F=\nabla \times G$ if and only if $\nabla \cdot F=0$???

