Lecture * 16

Title: Parametric Surfaces

Section: Stewart 16.6

Warmup: Compute the divergence and curl of

$$
F(x, y, z)=\left(x^{2}+e^{z} x, \sin (x y), e^{z} x-z\right)
$$

Soln:

$$
\begin{aligned}
\nabla \times F & =\left|\begin{array}{lcc}
\vec{i} & \vec{y} & \vec{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
x^{2}+e^{z} x & \sin (x y) & e^{z} x-z
\end{array}\right| \\
& =\vec{i}(0-0)-\vec{y}\left(e^{z}-x e^{z}\right)+\vec{k}(y \cos (x y))
\end{aligned}
$$

- $\nabla \cdot F=2 x+e^{z}+x \cos (x y)+x e^{z}-1$

Defn: A parametric curve is a map

$$
\vec{r}(t)=x(t) \vec{z}+y(t) \vec{y}
$$

for $a \leq t \leq b$
$\leftrightarrow$ Determined by 1-parameter $t$.

Defn: A parametric surface is a map

$$
\begin{aligned}
\vec{r}(u, v) & =x(u, v) \vec{\imath}+y(u, v) \vec{\jmath}+z(u, v) \vec{k} \\
& =(x(u, v), y(u, v), z(u, v))
\end{aligned}
$$

So $\vec{r}$ maps some domain $D$ in $w$-plane into $\mathbb{R}^{3}$. The associated surface, $S$, is the image of $\vec{r}$ in $\mathbb{R}^{3}$ 4A surface can have multiple param.



Example: $\quad \vec{r}(u, v)=(2 \cos (u), v, 2 \sin (u))$
What is the associated surface?

Soln: - Understand image when $u \cong v$ is fixed.

- Spae $v=v_{0}$ is fixed, then as $u$ varies, we get a curve w/ param. $u$.
- $\quad x=2 \cos (u), y=v_{0}=\stackrel{=}{c}$ constant,$z=2 \sin (u)$ $\Rightarrow x^{2}+z^{2}=4, y=v_{0}$
$\Rightarrow$ As $u$ varies, we get circle of radius 2 lifted $V_{0}$ amount away from $x z$-plane
- As $v$ varies we just get family of circles that make up a cylinder!


Ex: Spse $\vec{r}(u, v)$ is as above, but w/ $0 \leq u \leq \pi / 2,0 \leq v \leq 3$.

Soln: - As $0 \leq u \leq \pi / 2 \Rightarrow$ just get first $1 / 4$ of circle.

- As $0 \leqslant v \leq 3 \Rightarrow$ cylinder has height 3 .


Rem: . To visualize, often helpful to looter at curves

$$
\dot{r}\left(u_{0}, v\right) \text { or } \vec{r}\left(u, v_{0}\right)
$$

*view as "constant/fixed"
and see how they assemble into a surface

Picture:



Def:
$\vec{r}\left(u_{0}, v\right)=$ vertical grid curves
$\vec{r}\left(u, v_{0}\right)=$ horizontal grid curves

Ex 8

$$
\stackrel{\rightharpoonup}{r}(u, v)=((2+\sin (v)) \cos (u),(2+\sin (v)) \sin (u), u+\cos (v))
$$

Describe the associated surface

Soln: $\quad$ Fix $v=v_{0}=$ constant

$$
\begin{aligned}
\vec{r}\left(u, v_{0}\right) & =\left(\left(2+\sin \left(v_{0}\right)\right) \cos (u),\left(2+\sin \left(v_{0}\right) \sin (u), u+\cos \left(u_{0}\right)\right.\right. \\
\Rightarrow x^{2}+y^{2} & =\left(2+\sin \left(v_{0}\right)\right)^{2} \\
z & =u+\cos \left(v_{0}\right)
\end{aligned}
$$

$\Rightarrow$ hor. grid lines are helixes

- Fix $u=u_{0}=$ constant

$$
\left.\Rightarrow \begin{array}{rl}
x & =\text { constant }+ \text { constant } \cdot \sin (v) \\
y & =\cdots+\sin (v) \\
z & =\cdots+\cos (v)
\end{array}\right\} \begin{aligned}
& \text { Something periodic } \\
& \text { in } v=\text { circle/ellipse } \\
& \text { like. }
\end{aligned}
$$

## Picture:

Ex: Find parametric equ for plane that passes through $\vec{r}_{0}$ and contains vectors $\vec{a}, \vec{b}$ (nox-parallel).

Soln: - If $\vec{r}_{0}=\overrightarrow{0} \Rightarrow \vec{r}(u, v)=u \vec{a}+v \vec{b}$

- If $\vec{r}_{0} \neq \overrightarrow{0}$, we just shift our surface by $\vec{r}_{s}$.

$$
\Rightarrow \vec{r}(u, v)=\vec{r}_{0}+u \cdot \vec{a}+v \cdot \vec{b} .
$$

Rem: If $\vec{r}=(x, y, z), \vec{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$

$$
\begin{array}{r}
\vec{a}=\left(a_{1}, a_{2}, a_{3}\right), \vec{b}=\left(b_{1}, b_{2}, b_{3}\right) \\
\Rightarrow \vec{r}(u, v)=\left(x_{0}+u a_{1}+v b_{1}, y_{1}+u a_{2}+b_{2} v,\right. \\
\left.z_{0}+u a_{3}+v b_{3}\right)
\end{array}
$$

Ex: Find param. equ for sphere $x^{2}+y^{2}+z^{2}=a^{2}$

Soln: - Use spherical coordinates!

$$
\text { - } \begin{aligned}
\vec{r}(u, v) & =(a \sin (u) \cos (v), a \sin (u) \sin (v), a \cos (u)) \\
0 & \leq u \leq \pi, \quad 0 \leq v \leq 2 \pi
\end{aligned}
$$

Picture:


Ex: Find param equ for cylinder $x^{2}+y^{2}=4,0 \leq z \leq 1$

Soln: - Draw:


- $\dot{r}(u, v)=(2 \cos (u), 2 \sin (u), v)$

$$
0 \leq u \leq 2 \pi, \quad 0 \leq v \leq 1 .
$$

$$
\text { Soln 2: } \begin{gathered}
\vec{r}(u, v)=\left(2 \cos \left(u^{2}\right), 2 \sin \left(u^{2}\right), \sin (v)\right) \\
0 \leq u \leq \sqrt{2 \pi}, 0 \leq v \leq \pi / 2
\end{gathered}
$$

Ex: Find param equ for $z=x^{2}+2 y^{2}$
Soln: $\quad \vec{r}(u, v)=\left(u, v, u^{2}+2 v^{2}\right)$

Ex: Find param equ for $z=f(x, y)$

Soln: $\quad \vec{r}(u, v)=(u, v, f(u, v))$

Ex: Find param eqn for cone $z=\sqrt{x^{2}+y^{2}}$
Soln 1: $\quad \vec{r}(u, v)=\left(u, v, \sqrt{u^{2}+y^{2}}\right)$

$$
\text { Soln } 2: \quad \vec{r}(u, v)=(u \cos (v), u \sin (v), u)
$$

Tangent Planes

Recall: Given $\vec{r}(t)=(x(t), y(t))$
$\vec{r}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$ is tangent to $\vec{r}(t)$.
$\Rightarrow \quad\left(x\left(t_{0}\right)+t \cdot x^{\prime}\left(t_{0}\right), y\left(t_{0}\right)+t y^{\prime}\left(t_{0}\right)\right)$
defines tangent line to $\vec{r}(t)$ at $t_{0}$.

Ex:

$$
\begin{aligned}
& \vec{r}(t)=(\cos (t), \sin (t)) \\
& \vec{r}^{\prime}(t)=(-\sin (t), \cos (t))
\end{aligned}
$$

$\Rightarrow(1, t)$ is tangent line at $\vec{r}(0)=(1,0)$.

Notn: Consider $\dot{r}(u, v)=(x(u, v), y(u, v), z(u, v))$

Rem: $\quad w / u=u_{0}$ fixed, look at tangent vec. to $\dot{r}\left(u_{0}, v\right)$ at $\left(u_{0}, v_{0}\right)$ :

$$
\begin{gathered}
\vec{r}_{v}(t)=\left(\frac{\partial x}{\partial v}\left(u_{0}, v_{0}\right), \frac{\partial y}{\partial v}\left(u_{0}, v_{0}\right), \frac{\partial z}{\partial v}\left(u_{0}, v_{0}\right)\right) \\
v=v_{0} \quad \cdots \quad \vec{r}\left(u, v_{0}\right) \\
\vec{r}_{u}(t)=\left(\frac{\partial x}{\partial u}\left(u_{0}, v_{0}\right), \frac{\partial y}{\partial u}\left(u_{0}, v_{0}\right), \frac{\partial z}{\partial u}\left(u_{0}, v_{0}\right)\right)
\end{gathered}
$$

Rem: $\vec{r}_{v}, \vec{r}_{u}$ define two tangent vectors that det. tangent plane to surface

Picture:


Defn: If $\vec{r}_{u} \times \vec{r}_{u} \neq \overrightarrow{0}$, then the surface $S$ is called smooth (it has no "corners")

Defn: - The tangent plane of a smooth surface $S$ is the plane that contains the vectors $\vec{r}_{v}, \vec{r}_{v}$

- The normal vector to the tangent plane is the vector $\vec{r}_{u} \times \vec{r}_{v}$.

Rem: A plane is determined by its ${ }^{0}$ normal vector and $a$ base point.

$$
\begin{aligned}
\cdot \vec{n} & =(a, b, c)=\text { normal vector } \\
\cdot P & =\left(x_{0}, y_{0}, z_{0}\right)=\text { base point } \\
\text { Plane } & =\left\{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0\right\}
\end{aligned}
$$

Question: Why is $\vec{n}$ normal to the plane?
$\rightarrow \vec{n}=\nabla f$ where $f=a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)$
$\Leftrightarrow$ Plane $=f^{-1}(0)$
4 $\nabla f$ is always orthogonal to level sets. $\Rightarrow \vec{n} \perp$ plane .

Ex: Consider $\vec{r}(u, v)=\left(u^{2}, v^{2}, u+2 v\right)$ at $(1,1,3)$
What is the normal vector and tangent plane?

Sols: $\cdot \vec{r}_{u}=(2 u, 0,1)$

$$
\vec{r}_{v}=(0,2 v, 2)
$$

$\vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & k \\ 2 u & 0 & 1 \\ 0 & 2 v & 2\end{array}\right|=(-2 v,-4 u, 4 u v)$

- Normal at $(1,1,3)$ is: $(-2,-4,4)$
- Tangent plane at $(1,1,3)$ is:

$$
-2(x-1)-4(y-1)+4(z-3)=0
$$

Example: $\quad \dot{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$
What is tangent plane at $(1,0,0)$ ?

Sols:

$$
\begin{aligned}
& \text { • } \vec{r}^{\prime}(\pi / 2,0)=(1,0,0) \\
& \cdot \vec{r}_{u}=(\cos (u) \sin (v), \cos (u) \sin (v),-\sin (u)) \\
& \vec{r}_{v}=(-\sin (u) \sin (v), \sin (u) \cos (v), 0) \\
& \cdot \vec{r}_{u}(\pi / 2,0)=(0,0,-1) \\
& \vec{r}_{v}(\pi / 2,0)=(0,1,0) \\
& \cdot \vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
i & \dot{y} & k \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right|=(1,0,0)
\end{aligned}
$$

- Plane: $(x-1)=0$

