Lecture * 10

Title: Gradient vector fields + Line integrals

Section: Stewart 16.1, 16.2

Defn: A vector field on \mathbb{R}^{3} is a fan F that assigns to each point (x, y, z) a vector in \mathbb{R}^{3}.

$$
F(x, y, z)=P(x, y, z) \vec{i}+Q(x, y, z) \vec{\jmath}+R(x, y, z) \cdot \vec{k}
$$

Defn: A flowline of F is a parametric curve

$$
\vec{r}(t)=x(t) \overrightarrow{2}-y(t) \vec{z}+z(t) \vec{k}
$$

st $F(r(t))=\vec{r}^{\prime}(t)$.
$\leftrightarrow \vec{r}(t)$ is a path traced out by a particle being pushed by F.

Def: The gradient vector field of $f(x, y)$ is

$$
(\nabla f)(x, y)=\frac{\partial f}{\partial x}(x, y) \cdot \vec{\imath}+\frac{\partial f}{\partial y}(x, y) \cdot \vec{\jmath}
$$

Example:

$$
\begin{aligned}
& f(x, y)=x^{2} y-y^{3} \\
& (\nabla f)(x, y)=2 x y \cdot \vec{\imath}+\left(x^{2}-3 y^{2}\right) \cdot \vec{j}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& f(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right) \\
& (\nabla f)(x, y)=x \cdot \overrightarrow{2}+y \cdot \vec{f}
\end{aligned}
$$

Remark: Consider a level set of f.

$$
f^{-1}(c)=\{(x, y) \mid f(x, y)=c\}
$$

This is (typically) some curve C in \mathbb{R}^{2}.

Fact: $\quad \nabla f$ is always orthogonal to the level sets $f^{-1}(c)$.

Proof: Suse $f^{-1}(c)$ is parametric curve $\vec{r}(t)=x(t) \vec{\imath}=y(t) \vec{j}$ $\Rightarrow r(t)$ runs along the level set of $f^{-1}(c)$
\Rightarrow velocity of curve is tangent to $f^{-1}(c)$ and

$$
\begin{aligned}
& f(\vec{r}(t))=f(x(t), y(t))=c \text { for all } t \\
& \Rightarrow \quad 0=\frac{d}{d t}(c) \\
&=\frac{d}{d t}(f(x(t), y(t))) \\
&=f_{x}(x(t), y(t)) \cdot x^{\prime}(t)+f_{y}(x(t), y(t)) \cdot y^{\prime}(t) \\
&=(\nabla f)(x(t), y(t)) \cdot \vec{r}^{\prime}(t) \\
& \Rightarrow \nabla f \perp f^{-1}(c) .
\end{aligned}
$$

Picture:

Defn: The gradient vector field of $f(x, y, z)$ is

$$
(\nabla f)(x, y, z)=f_{x}(x, y, z) i+f_{y}(x, y, z) \vec{j}+f_{z}(x, y, z) \vec{k}
$$

Remark: Consider a level set of f.

$$
f^{-1}(c)=\{(x, y, z) \mid f(x, y, z)=c\}
$$

This is (typically) some surface S in \mathbb{R}^{3}

Fact: $\quad \nabla f$ is always orthogonal to the level sets $f^{-1}(c)$. $\rightarrow \nabla f$ is the normal vector to the surface

Defn: A vector F is conservative if $F=\nabla f$ for some function f. f is called a potential function for F.

Warning: Not all vector fields are conservative!

Noth: Let $\vec{r}(t)=x(t) \vec{\imath}+y(t) \vec{\jmath}$ be a parametric plane curve C w/ $a \leq t \leq b$.
\leftrightarrow We need \vec{r} to be "smooth/nice": $\vec{r}^{\prime}(t) \neq \overrightarrow{0}$ and $x^{\prime}(t), y^{\prime}(t)$ are continuous

Goal: Integrate a fan $f(x, y)$ over the curve C.

Remark: Divide $[a, b]$ into n subintervals $\left[t_{i-1}, t_{i}\right]$ of width $\Delta t_{i} w /$ samples t_{i}^{*} in $\left[t_{i-1}, t_{i}\right]$. $\vec{r}\left(\left[t_{i-}, t_{i}\right]\right)$ divide C up into n subares w/ lengths Δs_{i}.

$$
f\left(\overrightarrow{1 .}\left(t_{i}^{*}\right)\right)
$$

Def:

$$
\begin{aligned}
\int_{c} f(x, y) d s & : \\
\text { range in arc length } & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x\left(t_{i}^{\prime \prime}\right), y\left(t_{i}^{*}\right)\right) \cdot \Delta s_{i} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\vec{r}\left(t_{i}^{\prime}\right)\right) \cdot\binom{\text { length of } \vec{r} \text { over }}{\left(t_{i-1}, t_{i}\right]} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\vec{r}\left(t_{j}^{\prime}\right)\right) \cdot \int_{t_{i-1}}^{t_{i}} \sqrt{x^{\prime}(t)^{2}+y^{\prime}\left(t^{2}\right.} d t \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\vec{r}\left(t_{i}^{\prime}\right) \cdot\left|r^{\prime}\left(t_{i}^{\prime}\right)\right| \cdot \Delta t_{i}\right. \\
& =\int_{a}^{b} f(\vec{r}(t)) \cdot\left|\vec{r}^{\prime}(t)\right| d t
\end{aligned}
$$

Called the line integral of f along C

Remark: - This does not depend on the parametrization of C as long as C is not transversed multiple times by $\vec{r}(t)$. - This is sometype of change of coosds for curves.

Remark: When $f \geqslant 0, \int_{c} f d s=$ area under "fence" whose height above (x, y) in C is $f(x, y)$.

Remark: Given $\vec{V}, \vec{\omega}$, the curve that starts at \vec{v} and ends at $\vec{\omega}$ is:

$$
\vec{r}(t)=t \cdot \vec{\omega}+(1-t) \cdot \vec{v}
$$

for $0 \leq t \leq 1$.

Ex: Given $C=\{x=y, 0 \leqslant x \leqslant 1\}$, compute $\int_{C} x^{2} y d s$

Soln: (o) Parameterize curve: $\vec{r}(t)=t \vec{i}+t_{\mathbf{z}}$ for $0 \leqslant t \leq 1$
(1) Compute $\vec{r}^{\prime}: \vec{i}+\vec{y}$
(2) Set up integral and solve:

$$
\begin{array}{rlr}
\int_{c} x^{2} y d s & =\int_{0}^{1} t^{3} \cdot\left|\vec{r}^{\prime}(t)\right| d t \\
& =\int_{0}^{1} t^{3} \cdot \sqrt{2} d t \quad \sqrt{4 t^{2}+4 t^{2}} \\
& =\sqrt{2} / 4 & \sqrt{8 t^{2}}
\end{array}
$$

$\vec{r}(t)=t^{2} \vec{i}+t^{2} \vec{y} \quad$ is another parametrization

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=2 t \vec{i}+2 t \vec{z} \\
& \Rightarrow \int_{c} x^{2} y d s=\int_{0}^{1} t^{6} \cdot \sqrt{8} \cdot t d t=\frac{\sqrt{8}}{8}=\frac{\sqrt{2}}{4}
\end{aligned}
$$

\Rightarrow Didn't depend on parametrization.

Ex: $\quad \int_{C}\left(2+x^{2} y\right) d s$ where C is upper half of $x^{2}+y^{2}=1$

Soln:
(0) Param. C:

$$
\begin{aligned}
& \vec{r}(t)=\cos (t) \vec{\imath}+\sin (t) \vec{\jmath} \\
& w / \quad 0 \leq t \leq \pi .
\end{aligned}
$$

(1) Compute $\vec{r}^{\prime}: \sin (t) \vec{\imath}-\cos (t) \vec{\jmath}$
(2) Solve: $\int_{c} 2+x^{2} y d s$

$$
\begin{aligned}
& =\int_{0}^{\pi}\left(2+\cos ^{2} t \cdot \sin t\right) \cdot|1| d t \quad u=\cos t \\
& =2 \pi-\int_{1}^{-1} u^{2} d u \\
& =2 \pi+\frac{2}{3}
\end{aligned}
$$

Defn: A piecewise smooth curve, C, is a union of a finite \# of smooth curves C_{1}, \ldots, C_{n} w/

Defn: $\quad C=$ piecewise smooth curve:

$$
\int_{c} f d s=\sum_{i=1}^{n} \int_{c_{i}} f d s
$$

Ex: $\quad \int_{c} 2 x d s$ where C_{1} is $y=x^{2}$ from $(0,0)$ to $(1,1)$ and C_{2} is line segment from $(1,1)$ to $(0,0)$

Soln:
(0) Draw pic:

(1) Param curves:

$$
\begin{aligned}
& \vec{r}_{1}(t)=t \vec{\imath}+t^{2} \vec{\jmath} \\
& \vec{r}_{2}(t)=(1-t) \vec{\imath}+(1-t) \vec{\jmath}
\end{aligned}
$$

(2) Compute $\left|\vec{r}^{\prime}\right|$:

$$
\begin{aligned}
& \vec{r}_{1}^{\prime}=\vec{i}+2 t_{j} \\
& \vec{r}_{2}^{\prime}=-\vec{i}-\vec{j}
\end{aligned}
$$

(3) Set up integrals and solve

$$
\begin{aligned}
& u=1+4 t^{2} \\
&\left.d u=8 t^{d}\right\} \int_{c} 2 x d s=\int_{0}^{1} 2 t \cdot \sqrt{1+4 t^{2}} d t+2 \int_{0}^{1} \sqrt{2} \cdot(1-t) d t \\
&=\int_{1}^{5} \frac{1}{4} \sqrt{u} d t+2 \int_{0}^{1} \sqrt{2}(1-t) d t \\
&=\left.\frac{2}{3} \cdot \frac{1}{4} u^{3 / 2}\right|_{1} ^{5}+\left.2\left(\sqrt{2} t-\frac{\sqrt{2}}{2} t^{2}\right)\right|_{0} ^{1} \\
&=\frac{1}{6} \sqrt{125}-\frac{1}{6}+2 \sqrt{2}-\sqrt{2}
\end{aligned}
$$

Fact: If $-C=$ curve C but $w /$ opposite direction, then

$$
\int_{c} f d s=\int_{-c} f d s
$$

"Proof:" $\quad \int_{c} f d s=$ "signed" area under C raised up by f

$$
\begin{aligned}
& =\cdots-c \quad \cdots \quad \cdot f \\
& =\int_{-c} f d s
\end{aligned}
$$

Noon: - Let $\vec{r}(t)=x(t) \vec{i}+y(t) \dot{j}+z(t) \vec{k}$ be a parametric curve in \mathbb{R}^{3} for some curve C and $a \leq t \leq b$.

- $\vec{r}^{\prime}(t)=x^{\prime} \vec{i}+y^{\prime} \vec{y}+z^{\prime} \vec{k}$ is the velocity of r.

$$
\text { Defn: } \quad \begin{aligned}
\cdot & \int_{c}
\end{aligned} \quad f(x, y, z) d s \quad \begin{aligned}
& =\int_{a}^{b} f(\vec{r}(t)) \cdot\left|\vec{r}^{\prime}(t)\right| d t \\
& =\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
\end{aligned}
$$

- Length of $C=\int_{c} 1 d s$

$$
\text { - } \begin{aligned}
& \int_{c} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z \\
= & \int_{a}^{b} P(r(t)) x^{\prime}(t)+Q(r(t)) y^{\prime}(t)+R(\vec{r}(t)) z^{\prime}(t) d t
\end{aligned}
$$

Ex: Spse $\vec{r}(t)=(\cos (t), \sin (t), t)=$ helix for $0 \leq t \leq 2 \pi$.
Evaluate $\int_{c} y \sin (z) d s$

Soln: $\quad \int_{c} y \sin (z) d s=\int_{0}^{2 \pi} \sin ^{2}(t) \cdot \sqrt{(-\sin t)^{2}+(\cos t)^{2}+1} d t$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \sqrt{2} \sin ^{2}(t) d t \\
& =\frac{\sqrt{2}}{2} \int_{0}^{2 \pi} 1-\cos (2 t) d t \\
& =\sqrt{2} \cdot \pi
\end{aligned}
$$

