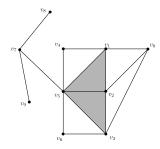
18.901 - Homework 14

Spring 2025

Please read and follow the instructions below.

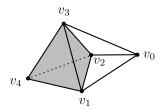
• We have listed the problems according to their relevance for the final exam.

Question 1. Consider the following simplicial complex:



- (i) Compute the Betti numbers of the simplicial complex.
- (ii) Compute the homology groups of the simplicial complex, providing explicit bases.

Question 2. Consider the following simplicial complex:



The 3-simplex depicted is not "filled-in", that is, the simplicial complex is composed of a copy of $\partial \Delta^3$ and three additional edges.

- (i) Compute the Betti numbers of the simplicial complex.
- (ii) Compute the homology groups of the simplicial complex, providing explicit bases.

Question 3. Let K_n denote the connected sum of n-copies of \mathbb{RP}^2 . Compute $H_{\bullet}(K_n)$.

Question 4. Show that every continuous map $f: S^n \to S^m$ is null-homotopic rel a basepoint whenever n < m.

Question 5. Suppose that $p: \Sigma_h \to \Sigma_g$ is a fibre bundle with discrete fibre F. What is the relationship between h and g?

Question 6. Consider the Klein bottle K viewed as a quotient of the square where the horizontal sides are identified and the vertical sides are "oppositely" identified. Let $\alpha: S^1 \to K$ denote the loop that corresponds to the image of the horizontal sides in the quotient and let $\beta: S^1 \to K$ denote the loop that corresponds to the image of the vertical sides in the quotient.

- (i) Let $X_{\alpha} = T^2 \cup_{\{0\} \times S^1 = \alpha} K$. Compute $H_{\bullet}(X_{\alpha})$. (ii) Let $X_{\beta} = T^2 \cup_{\{0\} \times S^1 = \beta} K$. Compute $H_{\bullet}(X_{\beta})$.

Question 7. Let X be the space that is obtained from identifying the north and south poles of S^2 to a single point.

- (i) Show that X is homotopy equivalent to a wedge sum of some familiar spaces.
- (ii) Compute $H_{\bullet}(X)$.

Question 8. Consider the space X obtained from S^2 by attaching n copies of \mathbb{D}^2 along n disjoint circles in S^2 .

- (i) Show that $X \simeq \bigvee_{i=1}^{n+1} S^2$.
- (ii) Compute $H_{\bullet}(X)$.

Question 9. Let $f_{\bullet}: C_{\bullet} \to D_{\bullet}, g_{\bullet}: C_{\bullet} \to D_{\bullet}, and h_{\bullet}: C_{\bullet} \to D_{\bullet}$ denote chain maps.

- (i) Show that f is chain homotopic to itself.
- (ii) Show that if f is chain homotopic to g, then g is chain homotopic to f.
- (iii) Show that if f is chain homotopic to g and g is chain homotopic to h, then f is chain homotopic to h.