
18.901– Introduction to topology

Midterm 2

MIT

Instructor: Alex Pieloch

4/17/25

Name:

Student Number:

• This exam contains 22 pages and 14 questions.

• This exam is out of 64 points. The distribution of points among all of the questions is shown
in the table on page 2 and is also indicated next to each question.

• Do NOT write on the backs of any pages. There are additional pages at the end of the exam
if you should need them to show further work. Please indicate in your solutions when we
should refer to the pages at the end of the exam for more details.

• You will have 80 minutes to complete the exam.

• Good luck!
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Distribution of Marks

Question Points Score

1 2

2 2

3 3

4 3

5 4

6 4

7 4

8 4

9 3

10 3

11 6

12 8

13 10

14 8

Total: 64
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1 Definitions and statements

1. (2 points) State Lebesgue’s covering lemma.
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Let X optmetricspace w an open cover X Ux Ux

8 0 st e X B 8 Ux for some α
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2. (2 points) Given a set of points z0, . . . , zm 2 Rn, define what it means for this set of points to
be geometrically independent and what it means for this set of points to be in general position.
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The Zo Zm are gem Id if

E Xi Zi o and E X 0 1 0

for T E IR
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3. (3 points) Give the definition of a deformation retraction.
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A deformation retraction of a space X onto a subspace A

is a homotopy rel A H X I X st

Ho idx

H retract onto A
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4. (3 points) State what it means for a continuous map f : X ! Y to satisfy the homotopy lifting
property for a space Z.
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f X Y satisfies HLP for Z if given go Zx 0 X and

g Z I tgoio fogo then g Z I X st
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2 True/False

For Questions 5-10, state whether or not the given statement is true or false. If it is true, provide
a proof of the statement. If it is false, provide either a counter-example to the statement or a
disproof.

5. (4 points) For every manifold X there exists a countable number of open subsets Ui ✓ X such
that Ui

⇠= Rn and X = [iUi.
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second countable countablebasis B Bn
4 X is locally Euclidean EX open Ux tx st lex IIR

Ux open basicopen Bx st eBx Ux

But countable of Bx's cover X countable of Uxs cover X
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6. (4 points) Let X be a connected T1 space with |X| > 1. The covering dimension of X is always
strictly greater than zero.

Page 8 of 22

Fix x y EX
T X T X X x V X y is open cover

If dim X 0 refinement Ux st
each meetsonlyone Ux

Us X x or Ux X y
Note UxUp st xella X y yell X x

UanUp
So UaUp open non empty disjoint

X connected a contradition

So dim X 0
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7. (4 points) The kernel of a group homomorphism is a normal subgroup.
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Let 9 G H be a grphom
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8. (4 points) Let p : E ! B be a fibre bundle with simply-connected fibre and let [↵] 2 ⇡1(E, x0).
If p⇤([↵]) is the unit, then [↵] is the unit.
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Let Ht I B be a htpy rel 2I from pox to c
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9. (3 points) If for each [↵], [�] 2 ⇡1(X, x0) there exists a continuous map of the torus f : S1⇥S1 !
X such that [↵] = [f |S1⇥{0}] and [�] = [f |{0}⇥S1 ], then ⇡1(X, x0) is abelian.
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Let 51 101 101 5 be parameterized by curves x ̅ 15 resp
So f x ̅ x 7 p3 1,3

x ̅ S s it 15 t s 2 2 x ̅ s'xs abelian

a p f x ̅ 7 CBT
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10. (3 points) Let A be a subspace of T n such that T n retracts onto A. Given a 2 A, every
non-trivial element of ⇡1(A, a) has infinite order.
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TY T retractsonto A inclusion ix it A a it T a injective
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3 Free response

11. (6 points) Show that Rn is paracompact.
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First recallthat IR Haus So STS everyopen cover admits a
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12. (8 points) Let X be a compact Hausdor↵ space. Show that every open cover of X admits a
refinement that is a partition of unity. (You should not use any of the results that we proved
in class about partitions of unity).
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Let X Valla be an open cover
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13. Let X be a space and define

Homeo(X) = {f : X ! X | f is a homeomorphism}.

Define an equivalence relation on Homeo(X) by f ⇠ g if and only if f is homotopic to g. Let

⇡0(Homeo(X)) = Homeo(X)/ ⇠ .

(For the following questions, you should not assume any results from the class.)

(a) (4 points) Show that ⇠ is an equivalence relation on Homeo(X).
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Reflexive FeHomeo X
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(b) (6 points) Define

• : ⇡0(Homeo(X))⇥ ⇡0(Homeo(X)) ! ⇡0(Homeo(X))

by
[f ] • [g] = [g � f ].

Show that (⇡0(Homeo(X)), •) defines a group.
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Pf Ht X X st Ho F H g

Defn Gt X X by Gt x Hehex Ho id h t x comp its cts
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14. (8 points) Consider
S3 = {(z, w) 2 C2 | |z|2 + |w|2 = 1}

and let µ = exp(2⇡i/n), where n 2 Z>0. There is an equivalence relation ⇠ on S3 given by
(z, w) ⇠ (z0, w0) if and only if (µj · z, µj · w) = (z0, w0) for some j 2 Z. Let Ln = S3/ ⇠ denote
the quotient and let q : S3 ! Ln denote the quotient map. Using that q is a fibre bundle,
compute the fundamental group of Ln.
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This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.

Page 18 of 22

Claim 8 e t Ln 103 8 for some K

Pf HLP 8 I 53 st 810 1,0 go8 8

8 i e q 8111 8111 ut o
53 simply conn htpy It I 53 rel 21 from J to x ̅

q Ht01 1 O go 11 q H 8 go it 2k

q It htpyrel 21 from 8 to 2k

Note the above showsthat α 2 c rel 21

x ̅ Ln 103 29 α 2 nz



18.901 Midterm 2 4/17/25

This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.

Page 19 of 22



18.901 Midterm 2 4/17/25

This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.

Page 20 of 22



18.901 Midterm 2 4/17/25

This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.

Page 21 of 22



18.901 Midterm 2 4/17/25

This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.

Page 22 of 22


