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Chapter 1

Point-set topology

1.1 Topological spaces and bases

We begin with the definition of a topological space.

Definition 1.1.1. A topology on a set X is a set of subsets of X, O, call open sets
that satisfies:

(1) ∅, X ∈ O.

(2) If O′ ⊆ O, then ∪U∈O′U ∈ O.

(3) If U1, . . . , Un ∈ O, then ∩ni=1Ui ∈ O.

The pair (X,O) is called a (topological) space.

The second condition in Definition 1.1.1 says that arbitrary unions of open sets
in X is an open set in X. The third condition in Definition 1.1.1 says that the finite
(not infinite!) intersection of open sets in X is an open set in X. Often times we
will simple call the set X a (topological) space, where the topology O is understood.

Example 1.1.2. Consider the set X = {1, 2, 3} and the following sets of subsets:

(1) {∅, {3}, {1, 2}, {2, 3}, {1, 2, 3}}. This is not a topology on the set X. The
intersection axiom is not satisfied.

(2) {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. This is a topology on the set
X. This is the discrete topology on the set X.

(3) {∅, {1}, {2, 3}, {1, 2, 3}}. This is a topology on the set X.

(4) {∅, {1, 2, 3}}. This is a topology on the set X. This is the trivial topology on
the set X.
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6 CHAPTER 1. POINT-SET TOPOLOGY

(5) {∅, {1}, {2}, {3}, {1, 2, 3}}. This is not a topology on the set X. The union
axiom is not satisfied.

(6) {∅, {2}, {3}, {2, 3}, {1, 2, 3}}. This is a topology on the set X.

(7) {∅, {1}, {2}, {1, 2}}. This is not a topology on the set X. It does not contain
{1, 2, 3}.

We have a notion of when one topology is courser/finer than another topology
on the same set.

Definition 1.1.3. Let O and O′ be two topologies on a set X. If O ⊆ O′, then O′
is finer than O and O is coarser than O′.

If O′ is finer than O, then the statement that O ⊆ O′ says that O′ has more open
subsets of X than O. In other words, it’s open subsets are finer. The analogous
explanation explains the term coarser.

Example 1.1.4. Every set always has at least two topologies, namely the discrete
topology and the trivial topology.

(1) The discrete topology on a set X has O given by the power set of X (the set
of all subsets of X).

(2) The trivial topology on a set X has O = {∅, X}.

The discrete topology on a set is always finer than any other topology on the set.
Similarly, the trivial topology is always coarser than any other topology on the set.

Often times, it is very difficult to explicitly express every open subset in a topol-
ogy. A basis gives us a way of defining a topology using only the basic open subsets
(i.e. not requiring us to explicitly specify every open subset). This is defined here.

Definition 1.1.5. A set of subsets B of X is a basis if

(1) X = ∪B∈BB.

(2) If x ∈ B′ ∩ B′′ with B′, B′′ ∈ B, then there exists B ∈ B such that x ∈ B ⊆
B′ ∩B′′.

The elements of B are called basic opens.

The first condition in Definition 1.1.5 states that the collection of subsets in a
basis covers the set X. The second condition in Definition 1.1.5 is a refinement
property: given a point in the intersection of two basic opens, there exists a basic
open that is contain in their intersection while also containing the given point.

Lemma 1.1.6. A basis B for a set X generates a topology O on X via U ∈ O if
and only if for all x ∈ U there exists B ∈ B such that x ∈ B ⊆ U .
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Proof. We need to verify the axioms of a topology. We verify each axiom in turn.

(1) Since there are no points in ∅, we vacuously have that ∅ ∈ O. To see that
X ∈ O, recall that the subsets in B cover X. So for each x ∈ X, there exists
B ∈ B such that x ∈ B ⊆ X. Consequently, X ∈ O.

(2) Suppose that Uα ⊆ X are open subsets and fix x ∈ ∪αUα. Note that x ∈ Uα
for some α. Since Uα is open, we have that there exists Bα ∈ B such that
x ∈ Bα ⊆ Uα ⊆ ∪αUα. Consequently, the union is contained in O.

(3) By induction, it suffices to prove the axiom for the intersection of two open
subsets. So suppose that x ∈ U1 ∩ U2. There exist B1, B2 ∈ B such that
x ∈ B1 ⊆ U1 and x ∈ B2 ⊆ U2. By the second condition in Definition 1.1.5,
we have that there exists B ∈ B such that x ∈ B ⊆ B1 ∩ B2 ⊆ U1 ∩ U2.
Consequently, we have shown that the intersection is open.

Example 1.1.7. Let X = R, the set of real numbers.

(1) The standard topology on R is the topology generated by the basis of open
intervals (a, b).

(2) A different basis that generates a different topology on R is given by the basis
of half-open intervals [a, b).

(3) Yet another basis that generates a different topology on R is given by subsets
of the form

{U ⊆ R | U = Rr {x1, . . . , xn} for some xi ∈ R}.

The reader should check for themselves that these sets of subsets each define a basis.
The reader can also note the topology generated by the first basis is finer than the
topology generated by the third basis. Also the topology generated by the second
basis is finer than the topology generated by the first basis.

Remark 1.1.8. We noted in Definition 1.1.1 that we did not require arbitrary in-
tersections of open subsets be open. It is natural to ask whether the definition of
a topology actually forces arbitrary intersections of open subsets to open; however,
this is not the case. Indeed, consider R with the standard topology and consider
the open subsets Un = (−1/n, 1/n). Note that ∩nUn = {0}, which is not an open
subset since it does not contain any open intervals.

Remark 1.1.9. As hinted at above, often times different bases generate different
topologies; however, this is not always the case. It could be that the same topology
is generated by multiple different bases. To see this, consider X = R2 and the two
bases given by
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(1) {Bx(r)}, that is, the set of open balls of radii r centered at points x.

(2) {Sqx(r)}, that is, the set of open squares with diagonals of length 2r centered
at x.

We leave it to the reader to check that these two bases, in fact, give the same
topology on R2 (hint: a square centered at x contains a ball centered at x which
itself contains a square centered at x.)

Topologies are defined in terms of open subsets. There is a complementary
notion of a closed subset for a topology.

Definition 1.1.10. Let X be a space. A subset A ⊆ X is closed if X rA is open.

Example 1.1.11. If we take X = R with the standard topology, then [a, b], [a,+∞),
(−∞,+∞), and {a} are all examples of closed subsets.

Given that closed subsets are complements of open subsets, the axioms in Defi-
nition 1.1.1 can be reinterpreted in terms of closed subsets.

Lemma 1.1.12. Let (X,O) be a topological space.

(1) The subsets ∅ and X are closed subsets.

(2) Arbitrary intersections of closed subsets gives a closed subset.

(3) Finite unions of closed subsets gives a closed subset.

Proof. We verify each claim in turn.

(1) Since ∅ is open, we have that X = Xr∅ is closed. Similarly, since X is open,
we have that ∅ = X rX is closed.

(2) Write Aα = X rUα for some arbitrary open subsets Uα. By de Morgan’s law,
we have that

∩αAα = ∩α(X r Uα) = X r ∪αUα.

However, ∪αUα is open. So ∩αAα is closed.

(3) Write Ai = XrUi for some finite number of open subsets Ui. By de Morgan’s
law, we have that

∪ni=1Ai = ∪ni=1(X r Ui) = X r ∩ni=1Ui.

However, ∩ni=1Ui is open. So ∪ni=1Ai is closed.
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1.2 Interiors and closures of subsets

In real analysis, one eventually considers the interiors and closures of subsets in
Rn or more general metric spaces. These notions have generalizations for arbitrary
topological spaces.

Definition 1.2.1. Let (X,O) be a topological space and let A ⊂ X be a subset.

(1) The interior of A is the open subset given by

int(A) =
⋃

U∈O s.t. U⊂A

U.

(2) The closure of A is the closed subset given by

A =
⋂

C closed s.t. A⊂C

C.

Put into words, the interior of a subset A is the union of all open subsets that
are contained in A. The closure of a subset A is the intersection of all closed subsets
that contain A. In particular, int(A) is the largest open subset that is contained
inside of A and A is the smallest closed subset that contains all of A.

Example 1.2.2. (1) Consider a set X with the discrete topology. Any subset
A ⊆ X is open and closed. So A = A = int(A).

(2) Consider a set X with the trivial topology. Any non-empty proper subset
A ( X has A = X and int(A) = ∅.

Our notions of interiors and closures actually give characterizations of open and
closed subsets.

Lemma 1.2.3. Let X be a space and let A be a subset of X.

(1) A is open if and only if A = int(A).

(2) A is closed if and only if A = A.

Proof. We verify each item in turn.

(1) If A is open, then A ⊆ A is an open subset contained in A. Consequently,
int(A) = A. Conversely, if int(A) = A, then since int(A) is open, being a
union of open subsets, we have that A is open.

(2) If A is closed, then A ⊆ A is a closed subset containing A. Consequently,
A = A. Conversely, if A = A, then since A is closed, being and intersection of
closed subsets, we have that A is closed.
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The notion of the closure gives rise to a notion of when a subset is dense.

Definition 1.2.4. Let X be a space. A subset A ⊆X is dense if A = X.

Example 1.2.5. Consider R with the standard topology. The subset R r N is a
dense subset of R. Similarly, Q ⊂ R is also a dense subset. The fact that both of
these subsets are dense can be derived using the relationship between the closure of
a subset and the limit points of the subset. See the first conclusion of Lemma 1.2.8.

Remark 1.2.6. As a general warning, the intersections of dense subsets need not
necessarily be dense. For example, consider R with the standard topology. The
subsets Q ⊂ R and Q +

√
2 ⊂ R are both dense in R; however, their intersection is

empty, which is not dense.

As hinted at above, to understand closures of subsets it is helpful to introduce
the notion of a limit point of a subset.

Definition 1.2.7. Let X be a space and let A ⊂ X be a subset.

(1) A point x ∈ X is a limit point of A if for all opens U that contain x, we have
that A ∩ U 6= ∅.

(2) The boundary of A is the subset

∂(A) = {x ∈ X | x is a limit point of A and X rA}.

We have the following characterization of A in terms of limit points and boundary
points.

Lemma 1.2.8. Let X be a space and let A be a subset of X.

(1) A = {limit points of A} = int(A) ∪ ∂(A).

(2) X = int(A) t ∂(A) t int(X rA).

Proof. The proof of the second item is given in the exercises. So will will focus on
the first item. For convenience, let L denote the set of limit points of the set A. We
will show that

A ⊆ L ⊆ int(A) ∪ ∂(A) ⊆ A,

which will prove the desired statement. We handle each of these containments in
turn:

• Fix x ∈ A and suppose by way of contradiction that x 6∈ L. Then there exists
an open subset U such that x ∈ U and A∩U = ∅. It follows that A ⊆ (XrU).
But XrU is closed. So we have that A ⊆ XrU . But this implies that x 6∈ A,
a contradiction.
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• Fix x ∈ L. For each open subset U such that x ∈ U , we have that A∩U 6= ∅.
So if there exists an open subset U such that x ∈ U ⊆ A, then x ∈ int(A). If
there does not exist such an open U , then for all open subsets U that contain
x, we have that U ∩ (X rA) 6= ∅. It follows that x ∈ ∂(A).

• First, if x ∈ int(A), then x ∈ A since int(A) ⊆ A ⊆ A. So suppose that
x ∈ ∂(A) and suppose by way of contradiction that x 6∈ A. It follows that
x ∈ X rA, which is open. Since x ∈ ∂(A) and X rA is open, we have that

∅ 6= (X rA) ∩A ⊆ (X rA) ∩A = ∅,

a contradiction.

As we noted above, the intersection of two dense subsets is not necessarily dense;
however, if one of the dense subsets is open, then the intersection is dense. The proof
of this claim utilizes the fact that Lemma 1.2.8 implies that a subset A ⊆ X is dense
if and only if it meets every non-empty open subset in X.

Lemma 1.2.9. Let X be a space. Let U ⊆ X be a dense open subset and let A ⊆ X
be a dense subset. The intersection U ∩A is dense in X.

Proof. Notice that by Lemma 1.2.8, we have that a subset is dense if and only if
every point in X is a limit point of the subset. This in turn implies that a subset
is dense if and only if it non-trivially intersects every non-empty open subset of X.
So to show that U ∩ A is dense, it suffices to show that V ∩ (U ∩ A) is non-empty
for any open subset V . Since U is dense, V ∩U 6= ∅. Moreover, V ∩U is open since
V and U are open. Since A is dense, we have that V ∩ (U ∩A) = (V ∩U)∩A 6= ∅.
This gives the desired result.

1.3 Examples of topologies

In this section, we discuss several prototypical examples of topologies: metric topolo-
gies, subspace topologies, product topologies, and quotient topologies.

1.3.1 Metric spaces

In this subsection, we discuss sets with metrics. The existence of a metric on a set
gives rise to a metric topology on the set. We begin by reviewing the definition of
a metric.

Definition 1.3.1. A metric on a set X is a function d : X ×X → R such that

(1) d(x, y) ≥ 0 with d(x, y) = 0 if and only if x = y,
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(2) d(x, y) = d(y, x), and

(3) d(x, z) ≤ d(x, y) + d(y, z).

We also define the ball of radius r centered at x ∈ X as

Bx(r) = {y ∈ X | d(x, y) < r}.

Example 1.3.2. Let X = Rn and define

d(x, y) = ‖x− y‖2 =

(
n∑
i=1

|xi − yi|2
)1/2

,

where x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn. The function d defines a
metric on Rn. We omit the proof of this fact here. An argument is given in most
real analysis courses.

Definition 1.3.3. Let X be a set with a metric d. The metric topology for the pair
(X, d) is the topology generated by the basis

B = {Bx(r) | x ∈ X, r ∈ R>0} .

It remains to check that the above basis is, in fact, a basis.

Lemma 1.3.4. The set of subsets B defined in Definition 1.3.3 is a basis.

Proof. We verify the two axioms of a basis in turn.

(1) Notice that Bx(1) ∈ B for all x ∈ X. It follows that

X ⊆ ∪x∈XBx(1) ⊆ ∪B∈BB ⊆ X.

In particular, the elements of B cover X.

(2) Let x ∈ Bx0(r0) ∩ Bx1(r1). Let ` = min(r0 − d(x0, x), r1 − d(x1, x)). Notice
that if z ∈ Bx(`), then

d(x0, z) ≤ d(x0, x) + d(x, z) ≤ d(x0, x) + r0 − d(x0, x) = r0.

So z ∈ Bx0(r0). Similarly, z ∈ Bx1(r1). It follows that x ∈ Bx(`) ⊆ Bx0(r0) ∩
Bx1(r1). This verifies the second axiom.

Example 1.3.5. The standard topology on Rn is the metric topology on Rn with
the metric

d(x, y) =

(
n∑
i=1

|xi − yi|2
)1/2

.

Remark 1.3.6. We warn the reader that different metrics on the same set can some-
times give rise to different topologies and can sometimes gives rise to the same
topology. This is discussed further in the exercises.
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1.3.2 Subspaces

Given a topological space X and a subset A ⊆ X, A can be endowed with a topology
by using the topology of X. This is the subspace topology.

Definition 1.3.7. Let X be a space with a topology O and let A ⊆ X be a subset.
The subspace topology on A is

OA = {A ∩ U | U ∈ O} .

We call A with this topology a subspace of (X,O).

It remains to check that OA above actually defines a topology.

Lemma 1.3.8. The set of subsets OA defined in Definition 1.3.7 defines a topology
on the set A.

Proof. We verify the axioms of a topology in turn.

(1) Note that ∅ = A ∩∅ and A = A ∩X. So ∅, A ∈ OA.

(2) Let Vα ∈ OA. So Vα = A ∩ Uα for some open subsets Uα ∈ O. Notice that⋃
α

Vα =
⋃
α

(A ∩ Uα) = A ∩
⋃
α

Uα,

which is in OA since ∪αUα is open. This proves that an arbitrary union of
opens is open.

(3) Let Vi ∈ OA with Vi = A ∩ Ui for some Ui ∈ O. Notice that

n⋂
i=1

Vi =
n⋂
i=1

(A ∩ Ui) = A ∩
n⋂
i=1

Ui,

which is in OA since ∩ni=1Ui is open. This proves that a finite intersection of
opens is open.

Remark 1.3.9. As an upshot of Definition 1.3.7, we have that any subspace in Rn is
a topological space, endowed with the subspace topology. Here we take the standard
topology on Rn.

Just as the topology on X gives rise to a topology on a subset A ⊆ X. A basis
for the topology of X also gives rise to a basis for the subspace topology of A.

Lemma 1.3.10. Let B be a basis for a topological space (X,O) and let A ⊆ X be a
subspace. The set of subsets

BA = {A ∩B | B ∈ B}

give a basis for the subspace (A,OA).
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Proof. There are two items that we need to check. First, we must show that BA is,
in fact, a basis. Next, we must check that the topology generated by this basis is
the subspace topology of the subset A.

First let’s show that BA is a basis. Since the sets in B cover X, we have that
the sets in BA cover A. Next, suppose that x ∈ (A ∩ B′) ∩ (A ∩ B′′) is in the
intersection of two basis elements. Then x ∈ B′ ∩ B′′. So there exists B ∈ B such
that x ∈ B ⊆ B′ ∩B′′. It follows that

x ∈ A ∩B ⊆ A ∩ (B′ ∩B′′) = (A ∩B′) ∩ (A ∩B′′).

This completes the check that BA is a basis.
Now we need to check that the topology generated by BA is the subspace topology

of the subset A. To this end, suppose that V ∈ OA. So V = A∩U for some U ∈ O.
Since B generates O, for each x ∈ U , we have that there exists B ∈ B such that
x ∈ B ⊂ U . It follows that x ∈ A ∩ B ⊆ A ∩ U = V . So V is open in the topology
generated by BA. Conversely, suppose that V is open in the topology generated by
BA. This implies that for all x ∈ V , there exists Bx ∈ B such that x ∈ A∩Bx ⊆ V .
So we can write V = ∪xA ∩ Bx = A ∩ (∪xBx) ∈ OA. So V is open in OA. This
proves that the two topologies agree.

Remark 1.3.11. If X is a metric space with metric d and A ⊆ X, then A can be
endowed with the structure of a metric space by defining a metric dA : A× A→ R
by dA(x, y) = d(x, y).

Notice that if A ⊆ X is a subset of a metric space X, then we can give A
two different topologies. The first is the metric topology associated to the metric
dA. The second is the subspace topology of A. Perhaps unsurprisingly, these two
topologies are the same.

Lemma 1.3.12. Let X be a metric space with metric d and let A ⊆ X be a subset.
The metric topology on A with metric dA in Remark 1.3.11 agrees with the subspace
topology of A as a subset of X.

Proof. To prove the claim, we need to show that a subset that is open in the metric
topology is open in the subspace topology and vise-versa. First, note that the metric
topology of X has basis

B = {Bx(r) | x ∈ X, r ∈ R>0}.

It follows from Lemma 1.3.10 that a basis for the subspace topology of A is given
by

BS = {A ∩Bx(r) | x ∈ X, r ∈ R>0}.

The metric topology on A has basis given by

BM = {BA
x (r) | x ∈ A, r ∈ R>0} = {A ∩Bx(r) | x ∈ A, r ∈ R>0},
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where BA
x (r) denotes the metric ball in A. It follows that BM ⊆ BS . Consequently,

if a subset is open in the metric topology, then it is open in the subspace topology.

We now need to prove the opposite inclusion. To this end, fix an open subset
U ⊆ A in the subspace topology and fix x ∈ U . There exists y ∈ X and r ∈ R>0

such that x ∈ A ∩ By(r) ⊂ U . For 0 < ε � r sufficiently small, we have that
Bx(ε) ⊂ By(r). It follows that A∩Bx(ε) = BA

x (ε) ⊂ U . This proves that U is open
in the metric topology, as desired.

The subspace topology gives rise to the notion of a discrete subspace.

Definition 1.3.13. Let X be a space and let A ⊆ X be a subset. The subset A is
discrete if its subspace topology is the discrete topology.

Example 1.3.14. We give three simple examples of (non-)discrete subspaces. We
will consider X = R with the standard topology.

(1) The subset A = {1/n | n ∈ N} ∪ {0} is not discrete (even though it is made
up of a countable number of points). To see that it is not discrete, we show
that {0} is not open in the subspace topology of A. To this end, suppose by
way of contradiction that {0} is open. This implies that there exists an open
interval (−ε, ε) such that (−ε, ε) ∩ A = {0}. But for each ε > 0, there exists
n ∈ N such that 1/n < ε. Consequently, (−ε, ε) ∩A 6= {0}, a contradiction.

(2) Any finite collection of ponts in R is a discrete subspace. Indeed, suppose
that A = {x1, . . . , xn}. Since there are a finite number of points, we may
find ε > 0 such that xj 6∈ (xi − ε, xi + ε) whenever i 6= j. It follows that
xi = A∩ (xi− ε, xi + ε). Consequently, every point in A is an open subset and
A has the discrete topology.

(3) The rational numbers Q are not a discrete subspace of R. A similar argument
as in the first example shows this.

We end this subsection by giving some warnings.

Remark 1.3.15. Let X be a space and let A ⊆ X be a subspace. If B ⊂ A is open
in A, then it does not necessarily follows that B ⊂ X is open. To see this, consider
X = R2 with the standard topology and A = R × {0} with the subspace topology.
Taking B = A, we have that B is open in A; however, B is not open in X. Similarly,
if B is closed in A, then B is not necessarily closed in X.

There is some saving grace to the above warning.

Lemma 1.3.16. Let X be a space and let A ⊆ X be a subspace.

(1) If A is an open subset of X and B ⊆ A is an open subset of A, then B ⊆ X
is an open subset of X.
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(2) If A is a closed subset of X and B ⊆ A is a closed subset of A, then B ⊆ X
is a closed subset of X.

The proof of the above lemma is an exercise.

Remark 1.3.17. Let X be a space and let A ⊆ X and B ⊆ A be subsets. The
interior of B in A does not necessarily equal the intersection of the interior of B in
X with A. To see this, take X = R2, A = R× {0}, and B = (a, b)× {0}. Observe
that the interior of B in X is empty. The interior of B in A is simply B.

Even though interiors do not behave nicely with respect to subspaces, closures
do.

Lemma 1.3.18. Let X be a space and let A ⊆ X and B ⊆ A be subsets. The
closure of B in A is equal to the intersection of A with the closure of B in X.

The proof of the above lemma is an exercise.

1.3.3 Product spaces

Given two topological spaces X and Y , we can take their Cartesian product as sets,
X ×Y . This Cartesian product obtains a topology from the topologies of X and Y .

Definition 1.3.19. Let X and Y be spaces. The product topology on X × Y is the
topology with basis

{U × V | U ⊆ X is open and V ⊆ X is open}.

We need to show that the above definition is well-defined. That is, the claimed
basis is, in fact, a basis.

Lemma 1.3.20. The collection of subsets in Definition 1.3.19 forms a basis.

Proof. We verify the axioms of a basis in turn.

(1) Since X ⊆ X and Y ⊆ Y are open subsets, we have that X × Y is in the
collection of subsets. Consequently, it covers the set X × Y .

(2) Suppose that z ∈ (U0 × V0) ∩ (U1 × V1) is a point in the intersection of two
basic opens. Notice that

(U0 × V0) ∩ (U1 × V1) = (U0 ∩ U1)× (V0 ∩ V1),

which is also a basis open. So the second axion of a basis can always be
satisfied.

Remark 1.3.21. Using Definition 1.3.19, one can inductively define a topology on
finite Cartesian products of spaces: X1, . . . , Xn.
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Remark 1.3.22. Let X and Y be spaces and let B and C be bases for the topologies
of X and Y respectively. The Cartesian product B × C is a basis for the product
topology of X × Y . Indeed, let A denote the basis for the product topology that is
given in Definition 1.3.19. We have that B × C ⊆ A. So the topology generated by
the basis B × C is coarser than the topology generated by A. Now let U be open in
the product topology. Fix x ∈ U . So there exists opens V ⊆ X and W ⊆ Y such
that x ∈ V ×W ⊂ U . Writing x = (xV , xW ) in coordinates, we have that there
exist basis opens A ∈ B and B ∈ C such that xV ⊆ A ⊆ V and xW ⊆ B ⊆ W . So
x ∈ A × B ⊂ U . It follows that U is open in the topology generated by the basis
B × C. This shows that the two topologies agree.

Notice now that we have two possibly different topologies on Rn. The product
topology and the metric topology. These two topologies agree.

Lemma 1.3.23. The standard (metric) topology on Rn, denoted OM , agrees with
the product topology on Rn, denoted OP .

Proof. A subset U ∈ OM if and only if for all x ∈ U , there exists Bx(r) ⊆ U . This
occurs if and only if for all x ∈ U ,

Bx(ε) ⊆ (x1 − ε, x1 + ε)× · · · × (xn − ε, x1 + ε) ⊆ Bx(r)

for some ε > 0. But this occurs if and only if U ∈ OP . This shows that U is open
in the metric topology if and only if it is open in the product topology, our desired
result.

Finally, given two spaces X and Y and two subsets A ⊆ X and B ⊆ Y , we have
two different topologies on A×B. The subspace topology and the product topology
associated to their respective subspace topologies. Again (hopefully the pattern is
clear), these to topologies agree.

Lemma 1.3.24. Let X and Y be spaces with subspaces A ⊆ X and B ⊆ Y . The
subspace topology of A×B ⊂ X × Y , denoted OS, agrees with the product topology
of A×B, denoted OP .

Proof. To show that the two topologies agree, we show that they are both generated
by the same basis. The topology OS is generated by subsets of the form (A×B) ∩
(U × V ) with U ⊆ X and V ⊆ Y open subsets. The topology OP is generated by
subsets of the form (A ∩ U)× (B ∩ V ). However,

(A×B) ∩ (U × V ) = (A ∩ U)× (B ∩ V ).

So their bases agree.
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1.3.4 Quotient spaces

Given a space X with an equivalence relation ∼, we would like to use the topology
on X to define a topology on the set of equivalence classes X/ ∼. The quotient
topology does this.

Definition 1.3.25. Let X be a space, let Y be a set, and let q : X → Y be a
surjective map. The quotient topology on Y is determined via U ⊆ Y is open if and
only if q−1(U) ⊆ X is open.

We need to check that Definition 1.3.25 actual defines a topology on Y .

Lemma 1.3.26. The open subsets in Definition 1.3.25 define a topology on Y .

Proof. We verify the axioms of a topology in turn.

(1) Since q is surjective, we have that q−1(Y ) = X. So Y is open. Also, q−1(∅) =
∅. So ∅ is open.

(2) Suppose that Uα ⊆ Y are open subsets. Notice that

q−1(∪αUα) = ∪αq−1(Uα),

but the right hand side is open. So ∪αUα is open.

(3) Suppose that Ui ⊆ Y are open subsets for i = 1, . . . , n. Notice that

q−1(∩ni=1Ui) = ∩ni=1q
−1(Ui),

but, again, the right hand side is open. So ∩ni=1Ui is open.

Remark 1.3.27. Recall that an equivalence relation ∼ on a set X determines a
surjection map q : X → X/ ∼. The quotient topology allows us to endow X/ ∼,
the set of equivalence classes, with a topology. Heuristically speaking, the quotient
topology on X/ ∼ describes the space that is obtained from X by “identifying”
point in the same equivalence class with each other. Put differently, the quotient
topology on X/ ∼ describes the space that is obtained from X by ”crushing” all
equivalent points together to a single point.

Example 1.3.28. Let X be a space and let A ⊆ X be a subset. We can define an
equivalence relation ∼A on X via x ∼A y if and only if either x = y or x, y ∈ A. We
defined X/A = X/ ∼A and endow it with the quotient topology from the surjective
map q : X → X/A. Heuristically speaking, X/A is the space that is obtained from
X by crushing all points in A to a single point.
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Example 1.3.29. For the below examples, we set

D2 =
{
x ∈ R2‖x‖2 ≤ 1

}
.

This is the closed 2-dimension disk/ball.

(1) Consider X = D2
1 t D2

2, the disjoint union of two closed disks. We define an
equivalence relation on X via x ∼ y if and only if either x ∈ ∂D2

1, y ∈ ∂D2
2

and x = y (when viewed as points in R2) or x = y in X. The quotient space
is obtained by gluing together two unit disks along their boundaries. This
produces a 2-dimensional sphere, S2.

(2) Consider X = D2 and let A = ∂D2. The quotient space X/A is obtained by
collapsing all points on the boundary of D2 to a single point. The resulting
space is a 2-dimensional sphere, S2.

(3) Consider X = [0, 1]2, a square. We define an equivalence relation on X via
(x0, y0) ∼ (x1, y1) if and only if either the points are equal or x0 = 0, y0 = y1,
and x1 = 1. The quotient space is obtained by gluing together two sides of
the square to create a cylinder.

(4) Consider X = [0, 1]2. We define an equivalence relation on X via (x0, y0) ∼
(x1, y1) if and only if either the points are equal or x0 = 0, y0 = y1, and
x1 = 1 or y0 = 0, x0 = x1, and y1 = 1. The quotient space is obtained by
gluing together the horizontal sides of the square and then glueing together
the vertical sides of the square. The resulting space is the 2-dimensional torus,
T 2, an “intertube” if you will.

1.4 Continuous maps

In the past sections, we discussed topological spaces and examples there of. In
this section, we discuss maps of topological spaces that preserve the topological
structures. These are continuous maps.

1.4.1 Basics on continuous maps

Definition 1.4.1. Let X and Y be spaces. A map of sets f : X → Y is continuous
if for each U ⊂ Y open, f−1(U) is open.

Intuitively speaking, if we view open subsets as neighborhoods of points, then a
map being continuous implies that if f(x) and f(x′) are neighboring points, then x
and x′ are neighboring points. In other words, this is saying that ”small changes”
to the output correspond to ”small changes” to the input. We will make this more
precise later.

Just as topologies can be defined in terms of bases, we can use bases to capture
the notion of continuity.
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Lemma 1.4.2. Let f : X → Y be a set map of spaces. Let B be a basis for the
topology of Y . f is continuous if and only if f−1(B) is open for each B ∈ B.

Proof. Suppose that U ⊂ Y is open, then by the exercises, U = ∪αBα for some
Bα ∈ B. So

f−1(U) = f−1(∪αBα) = ∪αf−1(Bα).

But the right hand side is a union of open subsets by assumption. So we have that
f is continuous. Conversely, if f is continuous, then f−1(B) is open for all B ∈ B
since each B is open.

Example 1.4.3. (1) Let X be a set. We consider both the discrete topology,
denoted OD, and the trivial topology, denoted OT . We have the identity
maps

1 : (X,OD) −→ (X,OT ) 1 : (X,OT ) −→ (X,OD).

Notice that the map from the discrete topology to the trivial topology is con-
tinuous. However, the map from the trivial topology to the discrete topology
is not continuous.

(2) Consider R endowed with the standard topology. Consider f : R → R given
by f(x) = 7 + x. Notice that f−1((a, b)) = (a− 7, b− 7), which is open. So f
is a continuous function.

The first property of continuity is that it is preserved by composition.

Lemma 1.4.4. Let f : X → Y and g : Y → Z be continuous maps of spaces. The
composition g ◦ f : X → Z is continuous.

Proof. Let U ⊆ Z be open. Since g is continuous, g−1(U) is open. Since f is
continuous, (g ◦ f)−1(U) = f−1(g−1(U)) is open. This proves that the composition
is continuous.

Since continuous maps preserve the topological structures of spaces, we can use
them to define when two spaces are equivalent as topological spaces (not just sets).

Definition 1.4.5. A continuous map of spaces f : X → Y is a homeomorphism if
and only if it has a continuous inverse g : Y → X. We say that X is homeomorphic
to Y and write X ∼= Y .

Remark 1.4.6. Two spaces are homeomorphic if and only if there is a bijection
between their sets of points and if this bijection gives a bijection between their sets
of open subsets. In other words, two spaces are homeomorphic if and only if they
are the same set with the same topology (up to relabeling points).

To make our lives a little easier from this point forward, we will assume the
following fact. A proof is typically given in a real analysis course and uses the
equivalent epsilon-delta notion of continuity for metric spaces, see Corollary 1.4.20.
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Fact 1.4.7. (1) If f : R → R and g : R → R are continuous maps, then (f +
g)(x) = f(x) + g(x), (f − g)(x) = f(x)− g(x), and (f · g)(x) = f(x) · g(x) are
continuous maps.

(2) If f : R→ R and g : R→ R are continuous maps and A ⊆ R satisfies g(x) 6= 0
for all x ∈ A, then (f/g)(x) = f(x)/g(x) defines a continuous map from A
with the subspace topology to R.

Example 1.4.8. We claim that (−1, 1) is homeomorphic to R. We consider the
maps f : (−1, 1)→ R and g : R→ (−1, 1) given by

f(x) =
x

1− |x|
and g(x) =

x

1 + |x|
.

A computation shows that f ◦ g and g ◦ f are both the identity maps, that is, f and
g are inverses of each other. So it remains to check that f and g are continuous. We
will argue that f is continuous (a similar argument will show that g is continuous).

First, note that h(x) = |x| is a continuous function since if (a, b) is an open
interval, we have that

h−1((a, b)) =


(a, b) ∪ (−b,−a) a ≥ 0

∅ b ≤ 0

(−b, b) else

,

which is open. So by Lemma 1.4.2, we have that h(x) = |x| is continuous. Also
notice that the constant function c(x) = 1 is continuous. Using item (1) of Fact 1.4.7,
we have that 1 + |x| is continuous on (−1, 1) and, moreover, using item (2), we have
that f is continuous.

Remark 1.4.9. We warn the reader that if f : X → Y is a continuous, bijective map
of space, then it does not necessarily follows that f is a homeomorphism. To see
this, consider X = R with the discrete topology and Y = R with the standard
topology. We take f : X → Y to be the identity map. Since X has the discrete
topology, f is continuous. The inverse map g : Y → X, which is the identity map,
has g−1(0) = 0. However, 0 is open in X, but it is not open in Y . Consequently, g
is not continuous and f is not a homeomorphism.

Given a set map f : X → Y , we can always restrict the map f to a subset A ⊆ X.
Continuity is compatible with restriction in the following sense:

Lemma 1.4.10. Let X be a space, let A ⊆ X be a subspace, and let f : X → Y be a
continuous map. The restriction f |A : A→ Y given by f |A(a) = f(a) is continuous.

Proof. Let U ⊂ Y be an open subset. Notice that (f |A)−1(U) = A ∩ f−1(U). Since
f is continuous, f−1(U) is open. Consequently, (f |A)−1(U) is open in A. This shows
that f |A is continuous.
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Corollary 1.4.11. Let X be a space and let A ⊆ X be a subspace. The inclusion
map i : A→ X given by i(a) = a is continuous.

Proof. The inclusion map is the restriction of the identity map to A. Since the
identity map is continuous, Lemma 1.4.10 gives that the inclusion is continuous.

We now dive into studying how continuity behaves with respect to the product
topology. We begin with projection maps:

Lemma 1.4.12. Let X and Y be spaces. The projection maps

prX : X × Y → X prX(x, y) = x

and
prY : X × Y → Y prY (x, y) = y

are continuous.

Proof. We argue that prX is continuous. If U ⊂ X is open, then pr−1X (U) = U × Y ,
which is open, as desired.

The nice feature of the product topology is that a function to a product is contin-
uous if and only if it is component-wise continuous. Typically checking component-
wise continuity is much easier.

Lemma 1.4.13. Consider a set map of spaces f : Z → X × Y and write f(z) =
(fX(z), fY (z)), where fX : Z → X and fY : Z → X. The map f is continuous if
and only if fX and fY are continuous.

Proof. Let U ⊆ X and V ⊆ Y be two open subsets and consider the basic open
U × V ⊂ X × Y . Notice that

f−1(U × V ) = (fX)−1(U) ∩ (fY )−1(V ).

So if fX and fY are continuous, then (fX)−1(U) and (fY )−1(V ) are open and,
consequently, by Lemma 1.4.2, f is continuous.

Conversely, let us assume that f is continuous. Let U ⊆ X be open. Notice that

f−1(U × Y ) = (fX)−1(U) ∩ Y = (fX)−1(U),

but the left hand side is open because f is continuous. Consequently, fX is contin-
uous. An analogous argument shows that fY is continuous.

Corollary 1.4.14. Let f : Rn → Rm is a map of sets and write

f(x) = (f1(x), . . . , fn(x)),

where fi : Rn → R. f is continuous if and only if each fi is continuous.
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Example 1.4.15. Consider

Sn(r) := {x ∈ Rn+1 | ‖x‖ = r}.

We claim that Sn(1) is homeomorphic to Sn(r) for every r ∈ R>0. Consider the
maps

f : Rn+1 −→ Rn+1, f(x) = r · x

and
g : Rn+1 −→ Rn+1, g(x) = x/r.

These maps are inverses of each other. We will show that f and g are continuous.
One needs to show that the restrictions of f and g to Sn(1) and Sn(r) and to their
images defines a homeomorphism. These remaining details will be left to the reader
in the exercises.

We will argue that f is continuous (the same argument will show that g is
continuous). First, notice that the function h(x) = r · x with r a fixed non-zero
constant and x ∈ R is continuous. Indeed, the pre-image of an open interval is an
open interval. Notice that fi(x1, . . . , xn) = h ◦ pri(x1, . . . , xn). So by Lemma 1.4.4
and Lemma 1.4.12, we have that fi is continuous. By Corollary 1.4.14, we have that
f is continuous, as desired.

Finally, we discuss continuity in the context of quotient spaces.

Definition 1.4.16. Let X be a space and let q : X → Y be a surjective map. Endow
Y with the quotient topology. The map q is called the quotient map

Lemma 1.4.17. The quotient map q : X → Y is continuous.

Proof. Let U ⊂ Y be open. By definition, this means that q−1(U) is open. Equiva-
lently, q is continuous.

We conclude with the following slight generalization of Lemma 1.4.17.

Lemma 1.4.18. Given a quotient map q : X → Y and a set map of spaces f : Y →
Z, the map f is continuous if and only if f ◦ q is continuous.

Proof. Fix an open subset U ⊂ Z. f is continuous if and only if f−1(U) is open for
all U ⊆ Z open. This is open if and only if q−1(f−1(U)) is open. This is true for all
U ⊆ Z open if and only if q◦f is continuous. This proves the desired statement.

Our original definition of continuity is useful, as demonstrated above; however,
at times, it is convenient to work with equivalent formulations of continuity. We
give four equivalent formulations below.

Proposition 1.4.19. Fix spaces X and Y . The following are equivalent.

(1) f : X → Y is a continuous map.
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(2) f−1(C) is closed for all C ⊆ Y closed.

(3) For each x ∈ X and V ⊆ Y open such that f(x) ∈ V , there exists an open
subset U ⊆ X such that f(U) ⊆ V .

(4) For all subsets A ⊆ X, f(A) ⊆ f(A).

Proof. We show that (1) holds if and only if (2) holds. Then we will show that (1)
holds if and only if (3) holds. Then we will show that (2) holds if and only if (4)
holds. This will show that the four conditions are logically equivalent.

• Let C ⊆ Y be closed. So C = Y r U for U ⊆ Y open. So

f−1(C) = f−1(Y r U) = f−1(Y ) r f−1(U) = X r f−1(U).

So if f is continuous, then f−1(C) is closed. Conversely, if f−1(C) is closed,
then f−1(U) is open. This proves the equivalence of (1) and (2).

• Suppose that f(x) ∈ V ⊆ Y with V open and set U = f−1(V ), which is
open in X. Then f(U) = f(f−1(V )) ⊆ V . This show that (1) implies (3).
Conversely, assume condition (3) and let V ⊆ Y be open. For each x such that
f(x) ∈ f(X) ∩ V , there exists an open subset Ux ⊆ X such that f(Ux) ⊆ V .
Defining

U =
⋃

x s.t. f(x)∈V

Ux,

we have that f−1(V ) = U , which is open. Consequently, f is continuous. This
show that (3) implies (1).

• Let A ⊆ X be a subset. Notice that

A ⊆ f−1(f(A)) ⊂ f−1(f(A)).

By condition (2), the right hand side is closed, so A ⊆ f−1(f(A)). Applying
f to this inclusion gives f(A) ⊆ f(A). This show that (2) implies (4). Con-
versely, if C ⊆ Y is closed, then set f−1(C) = A ⊆ X. By condition (4), we
have that

f(A) ⊆ f(f−1(C)) ⊆ C.

Apply f−1 to this chain, we have that

A ⊆ A ⊆ f−1(f(A)) ⊆ f−1(C) = A.

If follows that A = f−1(C) = A, which is closed, implying condition (2).
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As a corollary of Proposition 1.4.19, we have the following well-known epsilon-
delta formulation of continuity for metric spaces:

Corollary 1.4.20. Let X and Y be metric spaces. A map f : X → Y is continuous
if and only if for all x ∈ X and ε > 0, there exists δ > 0 such that dX(x, x′) < δ
implies that dY (f(x′), f(x)) < ε.

Proof. We begin by assuming that f is continuous. To this end, fix x ∈ X and
ε > 0. By Proposition 1.4.19 item (3), we have that there exists U ⊆ X open such
that x ∈ U and f(U) ⊆ Bf(x)(ε). Since U is open, there exists δ > 0 such that
Bx(δ) ⊆ U . It follows that f(Bx(δ)) ⊆ Bf(x)(ε); however, this is equivalent to the
condition that we are trying to prove.

Now conversely, let us suppose that the epsilon-delta condition holds. Let V ⊆ Y
be open and fix x ∈ X such that f(x) ∈ V . Since V is open, there exists ε > 0 such
that Bf(x)(ε) ⊆ V . So by the condition, there exists δ > 0 such that f(Bx(δ)) ⊆
Bf(x)(ε) ⊆ V . But this proves item (3) of Proposition 1.4.19, proving the desired
direction.

To wrap up our preliminary discussion on continuity, we discuss a useful lemma
for creating continuous maps by pasting together continuous maps on closed subsets.

Lemma 1.4.21. [Pasting Lemma] Let X be a space and suppose that X = A ∪ B,
where A and B are closed subspaces of X. If fA : A → Y and fB : B → Y are
continuous maps such that fA(x) = fB(x) for all x ∈ A ∩B, then

f : X → Y, f(x) =

{
fA(x) x ∈ A
fB(x) x ∈ B

is continuous.

Proof. First, notice that the map f is well-defined since the ambiguous part of
its definition is remedied by the fact that fA equals fB on the intersection. Now
suppose that C ⊆ Y is closed. We will show that f−1(C) is closed. Note, f−1A (C) =
f−1(C) ∩ A, which is closed in A. Similarly, f−1B (C) = f−1(C) ∩ B is closed in B.
By the exercises, we have that f−1A (C) is closed in X. Similarly, f−1B (C) is closed in
X. So f−1(C) = f−1A (C) ∪ f−1B (C) is closed in X, as desired.

Example 1.4.22. Consider f : R→ R given by

f(x) =

{
0 x ≤ 0

x x ≥ 0
.

By the Pasting Lemma, f is continuous.
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Example 1.4.23. Write I = [0, 1]. Let α : I → X and β : I → X be continuous
maps such that α(1) = β(0). Define

α ? β : I −→ X, (α ? β)(t) =

{
α(2t) 0 ≤ t ≤ 1/2

β(2t− 1) 1/2 ≤ t ≤ 1
.

By the Pasting Lemma, α ? β is continuous. We call α ? β the concatenation of α
and β.

1.4.2 Limits and continuity

A natural question to ask is whether or not a continuous map preserves some notion
of limits. To make sense of such a question, we must make sense of limits for
arbitrary topological spaces:

Definition 1.4.24. A sequence of points xn ∈ X converses to a point x ∈ X if and
only if for every open subset U ⊆ X such that x ∈ U , the set U contains all but
finitely many of the points xn. We write xn → x.

Remark 1.4.25. In real analysis one observes that limits in Rn are always unique;
however, this is not true in general. Limits need not necessary be unique. We can
see this in two examples:

(1) Let X be a set with the trivial topology and set xn = x for all n and some
x ∈ X. Notice that for all y ∈ X, we have that xn → y. Consequently, the
limit is not unique.

(2) Consider X = R1 t R2/ ∼ where x ∼ y if and only if either x = y or x ∈
R1r {0}, y ∈ R2r {0}, and x equals y when both viewed as points in R. This
space is called the ”fat point”. Let o1 and o2 denote the images of the origins
in R1tR2 in X. Notice that they map to distinct points. Consider xn = [1/n],
where 1/n ∈ R1. Notice that xn → o1 and xn → o2. Consequently, the limit
is not unique.

Lemma 1.4.26. Let X be a space and let A ⊆ X be a subset. If a sequence of
points xn is contained in A and xn → x, then x ∈ A.

Proof. We will use the limit point formulation of the closure to prove this result.
Let U be an open subset that contains x. Since xn → x, U ∩∪n{xn} 6= ∅. It follows
that U ∩A 6= ∅. Since U was arbitrary, we have that x ∈ A.

We warn the reader that the converse of Lemma 1.4.26 is not true. That is,
if x ∈ A, then this does not imply that there exists a sequence xn ∈ A such that
xn → x. A counter-example is given in the exercises. To obtain the converse, we
need to assume that our space X is first countable.
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Definition 1.4.27. A space X is first countable if and only if for all x ∈ X there
exists a countable number of open subsets U1, . . . , Un such that if U is an open
subset that contains x, then Ui ⊆ U for some i.

Example 1.4.28. Every metric space is first countable. For each x, one can consider
the balls Bx(1/n).

There is an equivalent formulation of first countability that is typically easier to
work with.

Lemma 1.4.29. A space X is first countable if and only if for all x ∈ X there
exists a countable number of open subsets V1 ⊇ V2 ⊇ · · · such that if U is an open
subset that contains x, then Vi ⊂ U for some i.

Proof. Let x ∈ X and let Ui be as in the definition of first countable. We define
V1 = U1. We define Vm inductively as follows: Vm−1 ∩ Um is open and contains x.
So there exists Unm such that Unm ⊆ Um∩Vm−1. We set Vm = Unm . This collection
of subsets satisfies the conditions in the lemma.

We now can prove the converse of Lemma 1.4.26 for first countable spaces.

Lemma 1.4.30. Let X be first countable and let A ⊆ X be a subset. If x ∈ A, then
there exist xn ∈ A such that xn → x.

Proof. Consider open subsets V1, . . . , Vn, . . . as in Lemma 1.4.29. Since x ∈ A,
Vi ∩A 6= ∅. So there exists xi ∈ A∩ Vi. Now let U be an open subset that contains
x. Then there exists Vn such that Vn ⊆ U . This implies that xk ∈ U for all k ≥ n.
Consequently, U meets all but finitely many of the points xn. It follows that xn → x,
as desired.

We now start to analyze how continuity of maps plays with limits of sequences.
We have the following implication for all spaces.

Lemma 1.4.31. Suppose f : X → Y is continuous. If xn → x, then f(xn)→ f(x).

Proof. We will prove the contrapositive statement. Suppose that f(xn) 6→ x. There
exists an open U that contains f(x) such that U does not contain infinitely many
of the f(xn). This implies that f−1(U) does not contain infinitely many of the xn.
Indeed, if f−1(U) contained all but finitely many of the xn, then all but finitely
many of the xn would be mapped via f into U , but then U would contain all but
finitely many of the f(xn), a contradiction. So we find that xn 6→ x.

When the space X is first countable, the converse of Lemma 1.4.31 holds.

Lemma 1.4.32. Let X be first countable and let f : X → Y be a set map of spaces.
If for all x ∈ X and all sequences xn → x one has that f(xn) → f(x), then f is
continuous.
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Proof. We will show that f(A) ⊂ f(A) for an arbitrary subset A, which is equivalent
to f being continuous. So fix A ⊆ X. Let x ∈ A and xn ∈ A be a sequence such that
xn → x. Such a sequence exists by Lemma 1.4.30. By Lemma 1.4.26, f(xn)→ f(x)
implies that f(x) ∈ f(A). This implies that f(A) ⊂ f(A), which is what we wanted
to show.
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