18.901– Introduction to topology

Midterm 2

MIT

Instructor: Alex Pieloch

11/14/23

Name: __

Student Number: __

• This exam contains 17 pages and 13 questions.

• This exam is out of 56 points. The distribution of points among all of the questions is shown in the table on the page 2 and is also indicated next to each question.

• You will have 80 minutes to complete the exam.

• Good luck!
Distribution of Marks

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>
1 Definitions and statements

1. (3 points) Give the definition of a partition of unity on a space X.

2. (2 points) Given two continuous maps $f: X \to Y$ and $g: X \to Y$ and a subspace $A \subset X$, define what it means for f to be homotopic to g rel A.

3. (2 points) Define what it means for two spaces X and Y to be homotopy equivalent.

4. (3 points) State the Lebesgue covering lemma.
2 True/False

For Questions 5-8, state whether or not the given statement is true or false. If it is true, provide a proof of the statement. If it is false, provide either a counter-example to the statement or a disproof.

5. (4 points) For every manifold X there exists a countable number of open subsets $U_i \subset X$ such that $U_i \cong \mathbb{R}^n$ and $X = \bigcup_i U_i$.

6. (3 points) A group homomorphism is injective if and only if its kernel is the trivial subgroup.
7. (4 points) Let X be a space with covering dimension equal to n. If $A \subset X$ is a closed subspace, then A has covering dimension less than or equal to n.

8. (4 points) If $\alpha : [0,1] \to X$ and $\beta : [0,1] \to X$ are homotopic rel $\partial [0,1]$ and $\gamma : [0,1] \to X$ satisfies $\alpha(1) = \gamma(0)$, then $\alpha \cdot \gamma$ is homotopic to $\beta \cdot \gamma$ rel $\partial [0,1]$.
3 Free response

9. (6 points) Let X be a manifold and fix $x_0 \in X$. Show that there exists a continuous map $f: X \to \mathbb{R}^N$ for some $N > 0$ and an open neighborhood U of x_0 that satisfy: For all $x \in U$, if $f(x) = f(y)$, then $x = y$.
10. (6 points) Let X be a paracompact space. Let $x \in X$ and let $A \subset X$ be a closed subset that does not contain x. Show that there exist open sets $U, V \subset X$ such that $x \in U$, $A \subset V$, and $U \cap V = \emptyset$.
11. Consider the map \(\varphi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}/10\mathbb{Z} \) given by \(\varphi(x, y) = [2x + 3y] \).

 (a) (2 points) Show that \(\varphi \) is a homomorphism.

 (b) (1 point) What is the image of \(\varphi \)?
(c) (2 points) Show that \(H = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x = \frac{10k - 3y}{2} \text{ for some } k \in \mathbb{Z}\} \) is a normal subgroup.

(d) (2 points) Describe the quotient group: \((\mathbb{Z} \times \mathbb{Z})/H\).
12. (6 points) Consider the CW-complex X that is constructed as follows: There is a single 0-cell v in X^0. There are three 1-cells in X^1 that are attached to v by the unique map $\partial D^1 \to \{v\}$. This gives a wedge of three circles. Parameterize each of these circles by curves α, β, γ respectively.

There are three 2-cells in $X^2 = X$ that are attached via the maps $\varphi_i: S^1 \to X^1$ by

- $\varphi_1(s) = \alpha \cdot \beta \cdot \alpha^{-1} \cdot \beta^{-1} \cdot \gamma \cdot \gamma \cdot \gamma(s),$
- $\varphi_2(s) = \alpha(s),$ and
- $\varphi_3(s) = \alpha^{-1}(s).$

Let $A \subset X$ denote the subcomplex given by $\{v\} \cup \{\gamma\}$. Show that X/A is homotopy equivalent to a wedge of familiar spaces. (You may draw pictures, but make sure to justify your pictures.)
This page is intentionally left blank for work that wouldn’t fit on the previous page.
13. (6 points) Consider $S^1 \lor S^1$ with basepoint x_0 given by the intersection of the two copies of S^1. Show that there exist infinitely many non-homotopic rel \{x_0\} retractions of $S^1 \lor S^1$ onto one of the copies of S^1.
This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.
This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.
This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.
This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.
This page is intentionally left blank for work that wouldn’t fit elsewhere and scratch work.