Lecture #7 - September 28th, 2023

Defn: A top. space X is Hausdorff if for each
$$x_1y \in X = w/X \neq y$$
.
 \exists opens U_1V st $x \in U_1, y \in V_2$, and $U \cap V = \varphi$.

$$\frac{Prop:}{} X, Y = Haus$$

$$() x \in X \Longrightarrow \{X\} = closed (So X = T_1)$$

$$() A \subseteq X subspace \Longrightarrow A Hausdorff$$

$$() X \times Y = Haus$$

$$(4) A \subseteq X cpt subspace \Longrightarrow A closed.$$

$$() X = X cpt subspace \Longrightarrow X = y.$$

Cos:
$$f: X \longrightarrow Y$$
 cts + biz st X = cpt, Y = Haus => f = homeo.

Proof: Let
$$g: Y \rightarrow X =$$
 set theoretic inverse of f .
NTS g is cts.
 $X cyt + C \subseteq X$ closed => $C = cpt => g^{-1}(C) = f(C) = cpt$
 Y Have => $g^{-1}(C) =$ closed.

П

<u>Defn</u>: X is T_1 if $\{x\} = closed$.

<u>Defn</u>: X = T, is <u>normal</u> if \forall closed $A, B \in X \text{ sd } A \cap B = \emptyset$, there exist $U, V \in X$ open st $A \subseteq U$, $B \subseteq V$, and $U \cap V = \emptyset$.

$$\begin{array}{c} (\mathbf{R}, \mathcal{O}) \neq \text{ Hausdorff } => T_{1} \\ (\mathbf{R}, \mathbf{U}, \mathbf{R}) = \mathbf{I}_{1} \neq \mathbf{I}_{1} \neq \mathbf{I}_{1} \neq \mathbf{I}_{2} = \mathbf{I}_{1} \\ (\mathbf{R}, \mathbf{U}, \mathbf{R}) = \mathbf{I}_{1} = \mathbf{I}_{1} = \mathbf{I}_{1} \\ (\mathbf{R}, \mathbf{U}, \mathbf{R}) = \mathbf{I}_{1} = \mathbf{I}_{1} = \mathbf{I}_{1} \\ (\mathbf{R}, \mathbf{U}, \mathbf{I}_{2}) = \mathbf{I}_{1} = \mathbf{I}_{2} \\ (\mathbf{R}, \mathbf{U}) = \mathbf{I}_{2} \\ (\mathbf{I}, \mathbf{U}) = \mathbf{I}_{2}$$

Worning: ① Quotient of a normal space need not be normal.
② X = normal, A S X => A = normal
S X = normal, A S X => A = normal
S X = 1, but closed disk
in X are separable by
opens
Some what involved.
We would concern
ourselves w/ them.
A = ① ③ 0, ① ①
③ R w/ basis { [a,b]} = normal (exer)
But
$$\mathbb{R}^2$$
 w/ the product topology is not normal

Prop:
$$X = cpt + Haus \Rightarrow X = normal$$

Proof:
Fix
$$A, B \subseteq X$$
 st $A, B = closed$ and $A \cap B = \phi$.
Fix $x \in A$, $\forall y \in B \exists Uy, Vy$ open st $x \in U_y, y \in V_y$, $U_y \cap V_y = \phi$
Since $B \subseteq X$ closed => $B = cpt$
=> $\exists V_{y_1,...,} V_{y_n}$ st $V_x = \bigcup i V_{y_i}$, $B \subseteq V_x$
Define $U_x = \bigcap_i U_{y_i} = open$.
So $x \in U_x$, $B \subseteq V_x$, and $U_x \cap V_x = \phi$.
As w/B , A is cpt . Also $A \subseteq \bigcup_x U_x$
=> $\exists U_{x_{i_j,..._j}} U_{x_m}$ st $A \subseteq \bigcup_i U_{x_i}$.
Define $U = \bigcup_{i=1}^{\infty} U_{x_i}$, $V = \bigcap_{i=1}^{\infty} V_{x_i}$. So $A \subseteq U$.
Since $B \subseteq V_x$; $\forall i => B \subseteq V$.
Finally, $U \cap V = \phi$. So U, V give the desired separating whoods \Box

Lemma: Given
$$A \subseteq X$$
 subset $\omega / X =$ metric space, the function
 $d(-,A): X \longrightarrow \mathbb{R}_{2}$ $d(x,A) = aeA d(x,a)$

is cts.

$$\begin{array}{c} \underline{P_{roof:}} & Fix \ \varepsilon > 0 \ . \ Fix \ x, y \in X \ st \ d(x, y) < \varepsilon/2 \\ Fix \ a \in A \ st \ d(x, a) < d(x, A) + \delta \\ d(y, A) \leq d(y, a) \leq d(y, x) + d(x, a) < \varepsilon/2 + \delta + d(x, A) \\ => \ d(y, A) \leq \varepsilon/2 + d(x, A) => \ d(y, A) - d(x, A) \leq \varepsilon/2 \\ Switch \ roles \ of \ x, y \ => \ d(x, A) - d(y, A) \leq \varepsilon/2 \\ => \ | \ d(x, A) - d(y, A) | < \varepsilon \\ \varepsilon - \delta \ dehn \ of \ cts \ gives \ result \ w/ \ \delta = \varepsilon/2 \end{array}$$

Proof: (Proof of above proposition)
Let
$$A, B \subseteq X$$
 be disjoint + closed.
 $U = \{x \mid d(x, A) - d(x, B) \ge 0\}$
 $V = \{x \mid d(x, A) - d(x, B) \ge 0\}$
 $d(-, A) - d(-, B) = cts \Longrightarrow U, V = open + disjoint$
NTS $A \subseteq U$, $B \subseteq V$.
Spse $a \in A$ st $d(a, A) - d(a, B) \le 0$
If $d(a, B) = 0 \Longrightarrow a = lim pt of B \Longrightarrow a \in B = closed \Longrightarrow A \cap B \neq \phi$
 $\Longrightarrow d(a, A) - d(a, B) \le 0$
 $\Longrightarrow A \subseteq U$
Similarly, $B \subseteq V$.

$$\frac{P_{\text{foof}}:}{P_{\text{foof}}:} \quad (=>) A = X \cdot U = \text{closed}.$$

$$=> \exists V, W \text{ open st } C \subset V, A \subset W, V \cap W = \alpha.$$

$$V \subseteq X \cdot W = \text{closed} \Rightarrow \overline{V} \subseteq X \cdot W \subseteq X \cdot U \Rightarrow \overline{V} \subseteq U$$

$$\Rightarrow C \subset V \subset \overline{V} \subset U.$$

(
$$\ell = 1$$
) $A, B = closed w/ A \cap B = \phi$
 $A \subseteq X \setminus B = open$
 $= > \exists V = open w/ A \subseteq V \subseteq \overline{V} \subseteq X \setminus B$
 $= > B \subseteq X \setminus \overline{V} = open$
 $Also V \cap (X \setminus \overline{V}) = \phi$

 \Box

Theorem: (Uryssohn's Theorem)
$$X = normal, A, BC X disj + closed=> $\exists cts f: X \rightarrow I st f(a) = 0$ if $a \in A$
 $f(b) = 1$ if $b \in B$$$

Theorem: (Tietz extension theorem) If
$$A \subseteq X$$
 closed and X normal, then
every cts $f: A \rightarrow IR$ admits a cts extension $\tilde{f}: X \rightarrow IR$
 $\Rightarrow \tilde{f}|_{A} = f$.

Cor:
$$X = metric space. X = compact iff each f: X \rightarrow R is cts.$$

Proof: Since
$$X = metric \Rightarrow cpt$$
 iff seq. cpt.
Spre $Xn \in X$ st Xn has no convergent subsequence. Assume Xn are distinct.
Spse $x = limit$ point of $U_n Xn$
 $Xn \neq X$, so $Bx(e) \cap i Xn$ must be finite for some $\varepsilon > 0$.
So for ε suff. small, $Bx(\varepsilon) \cap i X = \varphi$ when $x \notin U_n Xn$
 $\Rightarrow U_n Xn = closed$ and for distinct $Xn \exists Bxn(\varepsilon n)$ that misses all other Xi
 $f: U_n Xn \rightarrow \mathbb{R}$, $f(xn) = n$ is cts by ε -s argument.
By Tietz, f extends to $\tilde{f}: X \rightarrow \mathbb{R}$ st $\tilde{f} \neq$ bounded $\Rightarrow i = D$