Lecture ${ }^{\#} 24$-December $12^{\text {th }}, 2023$

Tum: If $X=$ "nice", then X has a universal cover.

Rem:
(1) $\tilde{X}=\left\{[\gamma] \mid \gamma: I \rightarrow X, \gamma(0)=X_{0}\right\}$ w/ $[\gamma]=[\delta]$ inf $\gamma \simeq \delta$ rel ∂I

$$
p: \tilde{X} \rightarrow x, p([\gamma])=\gamma(1)
$$

(2) Given $[\gamma] \in \tilde{X}$, defn $\gamma_{t}= \begin{cases}\gamma(s), & 0 \leq s \leq t \\ \gamma(t), & \text { else }\end{cases}$

Note, $\tilde{\gamma}=t \mapsto\left[\gamma_{t}\right]$ is the lift of γ.
(3)

$$
\begin{aligned}
& U_{[\gamma]}=\left\{[\gamma, \eta] \left\lvert\, \begin{array}{l}
U=\text { path -conn, op au, } \pi_{1}(U)^{0} \pi_{1}(x) \\
\eta: I \rightarrow U w / \eta(0)=\gamma(1)
\end{array}\right.\right\} \\
& p^{-1}(U)=U(\gamma] U_{(\gamma]} .
\end{aligned}
$$

Prop:
$X=$ "nice". \forall subgroups $H \leq \pi_{1}\left(X, X_{0}\right), \exists$ covering space $p_{H}: X_{H} \rightarrow X$ st $\operatorname{Im}\left(\rho_{H x}\right)=H$.

Proof: Consider \sim on $\bar{X}=\left\{[\gamma] \mid \gamma: I \rightarrow X, \gamma(0)=x_{0}\right\}$ by $[\gamma] \sim[\delta]$ iff $\gamma(1)=\delta(1)$ and $\left[\gamma \cdot \delta^{-1}\right] \in H$.
$(\sim$ is an equiv. rel. $) \gamma \sim \gamma$ since $\left[\gamma \cdot \gamma^{-1}\right]=0 \in H$
$\gamma \sim \delta \Rightarrow \delta \sim \gamma$ since $\left[\delta \cdot \gamma^{-1}\right]=\left[\gamma \cdot \delta^{-1}\right]^{-1} \in H$.
$\gamma \sim \delta, \delta \sim \varepsilon \Rightarrow \gamma \sim \varepsilon$ since $\left[\gamma \cdot \varepsilon^{-1}\right]=\left[\gamma \cdot \delta^{-1} \cdot \delta \cdot \varepsilon^{-1}\right]=\left[\gamma \cdot \delta^{-1}\right] \cdot\left[\delta \cdot \varepsilon^{-1}\right] \in H$
(Defn X_{H}) Let $X_{H}=\tilde{X} / \sim$.
Note, $[\gamma] \sim[\delta]$ iff $[\gamma \cdot \varepsilon] \sim[\delta \cdot \varepsilon] \quad \forall \varepsilon: I \rightarrow X$ w $\varepsilon(0)=\gamma(1)$.
\Rightarrow if $[\gamma] \sim[\delta]$, then \sim identifies $U_{[r]}$ w/ $U_{[\delta]}$.
$\Rightarrow \quad[\gamma] \mapsto \gamma(1)$ is a covering map over $U U_{[r]} / \sim \rightarrow U$.
(Compute $\left.\operatorname{Imp} \rho_{*}\right)$ Fix $\tilde{X}_{0}=\left[\right.$ constant path at $\left.x_{-}\right] \in X_{H}$.
Spae $[\alpha] \in \pi_{1}\left(x, x_{0}\right)$.
As above, we have a lift $\tilde{\alpha}=\alpha_{t} w / \tilde{\alpha}(0)=\tilde{x}_{0}, \tilde{\alpha}(1)=[\alpha]$. So $[\alpha] \in H$ if $\tilde{x}_{0} \sim[\alpha]$ iff $\tilde{\alpha}(0)=\tilde{\alpha}(1)$ iff $[\alpha] \in \operatorname{Im}\left(p_{m}\right)$

The: Spse $X=$ "nice". $p_{i}: \tilde{X}_{i} \rightarrow X$ for $i=1,2$ are ism of $\operatorname{Im}(\rho, *)$ is conjugate to $\operatorname{Im}\left(\rho_{2} *\right)$.

Proof: $\quad(\Leftrightarrow) \operatorname{Im}\left(\rho_{1 x}\right)=\operatorname{Im}\left(\rho_{2 *} \cdot \phi_{*}\right)=\rho_{2 *}\left(\pi_{1}\left(\tilde{X}_{2}, \phi\left(\bar{x}_{1}\right)\right)\right.$.
But $\rho_{2 *}\left(\pi_{1}\left(\tilde{x}, \phi\left(\tilde{x}_{1}\right)\right)\right)$ conj to $p_{2 *}\left(\pi_{1}\left(\tilde{x}_{2}, \tilde{x}_{2}\right)\right)$ since

$$
\rho_{2} \cdot \phi\left(\tilde{x}_{1}\right)=\rho_{1}\left(\tilde{x}_{1}\right)=x_{0}=p_{2}\left(\tilde{x}_{2}\right)
$$

$\Leftrightarrow=$ Spse $\operatorname{Im}\left(\rho_{1} w\right)=\bar{I}_{[\alpha-3}\left(\operatorname{Im}\left(\rho_{2 *}\right)\right)$
Let $\tilde{\alpha}: I \rightarrow \tilde{x}_{2}$ w/ $\tilde{\alpha}(0)=\tilde{x}_{2}$ be a lift of α. Then $\pi_{1}\left(\tilde{X}_{2}, \tilde{\alpha}(1)\right)$ is gen by $\tilde{\alpha}^{-1} \cdot \beta \cdot \tilde{\alpha}$ for $\beta \in \pi_{1}\left(\tilde{X}_{2}, \tilde{x}_{2}\right)$.

$$
\rho_{2^{*}}\left(\tilde{\alpha}^{-1} \cdot \beta \cdot \tilde{\alpha}\right)=[\alpha]^{-1} \cdot[\rho \cdot \beta] \cdot[\alpha] .
$$

So $\rho_{2^{2}}\left(\pi_{1}\left(\tilde{x}_{2}, \tilde{\alpha}(1)\right)\right)=\rho_{1 m}\left(\pi_{1}\left(\tilde{x}_{1}, \tilde{x}_{1}\right)\right)$
So \exists lifts

w/ $\tilde{p}_{1}\left(\tilde{x}_{1}\right)=\bar{\alpha}(1), \bar{p}_{2}(\tilde{\alpha}(1))=\tilde{x}_{1}$.
Note, $\tilde{\rho}_{2} \cdot \tilde{\rho}_{1}$ is a lift of $p_{1}: \tilde{X}_{1} \rightarrow X$ to \tilde{X}_{1}.
But II: $\tilde{X}_{1} \rightarrow \tilde{X}_{1}$ is also such a lift.
Since $\tilde{p}_{2} \circ \dot{p}_{1}\left(\tilde{x}_{1}\right)=\vec{x}_{1} \Rightarrow \tilde{p}_{2} \circ \tilde{p}_{1}$, 吕 agree at a point.

$$
\Rightarrow \tilde{p}_{2} \cdot \bar{p}_{1}=\mathbb{\pi} .
$$

Sim. $\tilde{p}_{1} \cdot \tilde{p}_{2}=\mathbb{1}$.
So \tilde{p}_{1} is the desired isomorphism.

Cor: $X=$ "nice"

$$
\left\{\begin{array}{l}
\text { Conj. classes of } \\
\text { subgroups of } \pi_{1}\left(X, x_{0}\right)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{ll}
\text { Isom. } & \text { classes of } \\
\text { path-conn } & \text { covers } \\
\tilde{X} \rightarrow X
\end{array}\right\}
$$

$\xrightarrow{\text { Regular Coverings }}$
Defn: An self-isomosphism $\tilde{X} \rightarrow \bar{X}$ of a covering space $\rho: \tilde{X} \rightarrow X$ is called a deck transformation.
$\leftrightarrow \operatorname{Aut}(\bar{X})=$ group of deck transformations

Ex: $\quad \operatorname{Aut}(\mathbb{R})=\mathbb{Z}$

Lemma: $\phi \in \operatorname{Aut}(\tilde{X})$ is completely determined by $\phi\left(\tilde{X}_{0}\right)$ when $\tilde{X}=$ path-conn and locally-path-conn.

Proof: $\quad \phi \in \operatorname{Aut}(X)$ is a lift of $p: \tilde{X} \rightarrow X$ to \tilde{X}. Any such lift is uniquely determined by where it sends a point.

Defray: A covering space is regular if for each $x \in X$ and $\tilde{x}, \tilde{x}^{\prime} \in p^{-1}(x)$, $\exists \phi \in \operatorname{Aut}(\tilde{x})$ w/ $\phi(\tilde{x})=\tilde{x}^{\prime}$ 。

The: $\quad X=$ "nice". $\hat{X} \rightarrow X$ regular of $\operatorname{Im}\left(p_{*}\right)$ is normal.
If normal, then $\operatorname{Aut}(\tilde{X})=\pi_{1}\left(X, x_{0}\right) / \operatorname{Im}\left(p_{n}\right)$.

Proof: \quad regular $\Longleftrightarrow \forall \hat{x}, \bar{x}^{\prime} \exists \phi$ w/ $\phi(\tilde{x})=\bar{x}^{\prime}$
$\Longleftrightarrow \exists$ lift

$$
\Leftrightarrow p_{*}\left(\pi_{1}(\bar{x}, \bar{x})\right)=p_{*}\left(\pi_{1}\left(\tilde{x}, \bar{x}^{\prime}\right)\right) \quad \forall \tilde{x}, \bar{x}^{\prime} .
$$

$\Leftrightarrow \rho_{*}\left(\pi_{1}(\tilde{x}, \tilde{x})\right)$ is conj inv.
$\Leftrightarrow \rho_{*}\left(\pi_{1}(\tilde{x}, \tilde{x})\right)$ is normal.
$\pi_{1}\left(X, x_{0}\right) \longrightarrow \operatorname{Aut}(\tilde{X}), \quad[\alpha] \longmapsto \phi_{\alpha}$ st $\phi_{\alpha}\left(\tilde{\alpha}(0)=\tilde{x}_{0}\right)=\tilde{\alpha}(1)$.
Note, lift of $\alpha \cdot \beta$ is $\tilde{\alpha} \cdot \phi_{\alpha}(\tilde{\beta})$.
So $[\alpha] \cdot[\beta] \mapsto \phi_{\alpha, \beta}\left(\bar{x}_{0}\right)=\phi_{\beta} \cdot \phi_{\alpha}\left(\widehat{x}_{0}\right) \Rightarrow \phi_{\alpha \beta}=\phi_{\beta} \cdot \phi_{\alpha}$.
$[\alpha] \in$ her iff $[\alpha] \in \rho_{*}\left(\pi_{1}\left(\tilde{x}, \bar{x}_{0}\right)\right)$.
Fix a path $\gamma: \pm \rightarrow \tilde{X}$ st $\gamma(0)=\tilde{x}_{0}, \gamma(1)=\tilde{x}_{1} \in \rho^{-1}\left(x_{0}\right)$.
Then $[p \circ \gamma] \in \pi_{1}\left(x, x_{0}\right)$ w/ lift $\gamma . \Rightarrow$ surg.

$$
\Rightarrow \pi_{1}\left(X, x_{0}\right) / \operatorname{Im}\left(\rho_{*}\right)=\operatorname{Aut}(\bar{X}) .
$$

